By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variatio...By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.展开更多
In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our me...In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structure...In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.展开更多
In this paper, variational iteration method and He-Laplace method are used to solve the nonlinear ordinary and partial differential equations. Laplace transformation with the homotopy perturbation method is called He-...In this paper, variational iteration method and He-Laplace method are used to solve the nonlinear ordinary and partial differential equations. Laplace transformation with the homotopy perturbation method is called He-Laplace method. A comparison is made among variational iteration method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms of differential equation can be easily handled by the use of He’s polynomials and provides better results.展开更多
Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are increasingly used in modeling practical super diffusive problems in fluid flow, finance and others areas of...Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are increasingly used in modeling practical super diffusive problems in fluid flow, finance and others areas of application. This paper presents the analytical solutions of the space fractional diffusion equations by variational iteration method (VIM). By using initial conditions, the explicit solutions of the equations have been presented in the closed form. Two examples, the first one is one-dimensional and the second one is two-dimensional fractional diffusion equation, are presented to show the application of the present techniques. The present method performs extremely well in terms of efficiency and simplicity.展开更多
In this paper, a user friendly algorithm based on the variational iteration method (VIM) is proposed to solve singular integral equations with generalized Abel’s kernel. It is observed that an approximate solutions y...In this paper, a user friendly algorithm based on the variational iteration method (VIM) is proposed to solve singular integral equations with generalized Abel’s kernel. It is observed that an approximate solutions yn(x) converges to the exact solution irrespective of the initial choice y0 (x). Illustrative numerical examples are given to demonstrate the efficiency and simplicity of the method in solving these types of singular integral equations.展开更多
In this paper, we consider two extended model equations for shallow water waves. We use He’s variational iteration method (VIM) to solve them. It is proved that this method is a very good tool for shallow water wave ...In this paper, we consider two extended model equations for shallow water waves. We use He’s variational iteration method (VIM) to solve them. It is proved that this method is a very good tool for shallow water wave equations and the obtained solutions are shown graphically.展开更多
Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous...Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.展开更多
Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and at...Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and atmospheric long waves, respectively. The obtained variational principles have also been proved to be correct.展开更多
The possibility of using Neumann's method to solve the boundary problems for thin elastic shells is studied. The variational statement of the static problems for the shells allows for a problem examination within the...The possibility of using Neumann's method to solve the boundary problems for thin elastic shells is studied. The variational statement of the static problems for the shells allows for a problem examination within the distribution space. The convergence of Neumann's method is proven for the shells with holes when the boundary of the domain is not completely fixed. The numerical implementation of Neumann's method normally requires significant time before any reliable results can be achieved. This paper suggests a way to improve the convergence of the process, and allows for parallel computing and evaluation during the calculations.展开更多
This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of func...This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.展开更多
基金Supported by the National Natural Science Foundation of China(10871141)
文摘By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.
基金funded by National University ofCivil Engineering(NUCE)under grant number 15-2020/KHXD-TD。
文摘In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金supported by the National Natural Science Foundation of China(Grant Nos.11301350,11172120,and 11202090)the Liaoning University Prereporting Fund Natural Projects(Grant No.2013LDGY02)
文摘In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.
文摘In this paper, variational iteration method and He-Laplace method are used to solve the nonlinear ordinary and partial differential equations. Laplace transformation with the homotopy perturbation method is called He-Laplace method. A comparison is made among variational iteration method and He-Laplace. It is shown that, in He-Laplace method, the nonlinear terms of differential equation can be easily handled by the use of He’s polynomials and provides better results.
文摘Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are increasingly used in modeling practical super diffusive problems in fluid flow, finance and others areas of application. This paper presents the analytical solutions of the space fractional diffusion equations by variational iteration method (VIM). By using initial conditions, the explicit solutions of the equations have been presented in the closed form. Two examples, the first one is one-dimensional and the second one is two-dimensional fractional diffusion equation, are presented to show the application of the present techniques. The present method performs extremely well in terms of efficiency and simplicity.
文摘In this paper, a user friendly algorithm based on the variational iteration method (VIM) is proposed to solve singular integral equations with generalized Abel’s kernel. It is observed that an approximate solutions yn(x) converges to the exact solution irrespective of the initial choice y0 (x). Illustrative numerical examples are given to demonstrate the efficiency and simplicity of the method in solving these types of singular integral equations.
文摘In this paper, we consider two extended model equations for shallow water waves. We use He’s variational iteration method (VIM) to solve them. It is proved that this method is a very good tool for shallow water wave equations and the obtained solutions are shown graphically.
文摘Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61070041 and 40775064)
文摘Variational principles are constructed using the semi-inverse method for two kinds of extended Korteweg-de Vries (KdV) equations, which can be regarded as simple models of the nonlinear oceanic internal waves and atmospheric long waves, respectively. The obtained variational principles have also been proved to be correct.
文摘The possibility of using Neumann's method to solve the boundary problems for thin elastic shells is studied. The variational statement of the static problems for the shells allows for a problem examination within the distribution space. The convergence of Neumann's method is proven for the shells with holes when the boundary of the domain is not completely fixed. The numerical implementation of Neumann's method normally requires significant time before any reliable results can be achieved. This paper suggests a way to improve the convergence of the process, and allows for parallel computing and evaluation during the calculations.
文摘This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.