By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variatio...By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.展开更多
In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we der...In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.展开更多
In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances....In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.展开更多
In this paper, by using p-distances on uniform spaces, we establish a general vectorial Ekeland variational principle (in short EVP), where the objective function is defined on a uniform space and taking values in a...In this paper, by using p-distances on uniform spaces, we establish a general vectorial Ekeland variational principle (in short EVP), where the objective function is defined on a uniform space and taking values in a pre-ordered real linear space and the perturbation involves a p-distance and a monotone function of the objective function. Since p-distances are very extensive, such a form of the perturbation in deed contains many different forms of perturbations appeared in the previous versions of EVP. Besides, we only require the objective function has a very weak property, as a substitute for lower semi-continuity, and only require the domain space (which is a uniform space) has a very weak type of completeness, i.e., completeness with respect to a certain p-distance. Such very weak type of completeness even includes local completeness when the uniform space is a locally convex topological vector space. From the general vectorial EVP, we deduce a general vectorial Caristi's fixed point theorem and a general vectorial Takahashi's nonconvex minimization theorem. Moreover, we show that the above three theorems are equivalent to each other. We see that the above general vectorial EVP includes many particular versions of EVP, which extend and complement the related known results.展开更多
By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a ne...By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.展开更多
The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these tw...The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these two theorems in the probabilistic metric space. The resultspresented in this paper generalize the corresponding results of [9--12].展开更多
By using sequentially lower complete spaces(see [Zhu, J., Wei, L., Zhu, C. C.: Caristi type coincidence point theorem in topological spaces. J. Applied Math., 2013, ID 902692(2013)]), we give a new version of vec...By using sequentially lower complete spaces(see [Zhu, J., Wei, L., Zhu, C. C.: Caristi type coincidence point theorem in topological spaces. J. Applied Math., 2013, ID 902692(2013)]), we give a new version of vectorial Ekeland's variational principle. In the new version, the objective function is defined on a sequentially lower complete space and taking values in a quasi-ordered locally convex space, and the perturbation consists of a weakly countably compact set and a non-negative function p which only needs to satisfy p(x, y) = 0 iff x = y. Here, the function p need not satisfy the subadditivity.From the new Ekeland's principle, we deduce a vectorial Caristi's fixed point theorem and a vectorial Takahashi's non-convex minimization theorem. Moreover, we show that the above three theorems are equivalent to each other. By considering some particular cases, we obtain a number of corollaries,which include some interesting versions of fixed point theorem.展开更多
Ekeland’s variational principle is a fundamental theorem in nonconves analysis. Its general statement is as the following:Ekeland’s Variational Principle"’a:. Let V be a complete metric space, and F: F—*-RU{ ...Ekeland’s variational principle is a fundamental theorem in nonconves analysis. Its general statement is as the following:Ekeland’s Variational Principle"’a:. Let V be a complete metric space, and F: F—*-RU{ + °°} a lower semicontinuous function, not identically +00 and bounded from, below. Let s>0 be given, and a point u^V such thatF(u)<infF+e.vThen there exists some point v £ V such that展开更多
The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational...The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.展开更多
From the viewpoint of continuous systems, optimal control problem is proposed for a class of controlled Hybrid dynamical systems. Then a mathematical method- HDS minimum principle is put forward, which can solve the a...From the viewpoint of continuous systems, optimal control problem is proposed for a class of controlled Hybrid dynamical systems. Then a mathematical method- HDS minimum principle is put forward, which can solve the above problem. The HDS minimum principle is proved by means of Ekeland' s variational principle.展开更多
基金Supported by the National Natural Science Foundation of China(10871141)
文摘By using the properties of w-distances and Gerstewitz's functions, we first give a vectorial Takahashi's nonconvex minimization theorem with a w-distance. From this, we deduce a general vectorial Ekeland's variational principle, where the objective function is from a complete metric space into a pre-ordered topological vector space and the perturbation contains a w-distance and a non-decreasing function of the objective function value. From the general vectorial variational principle, we deduce a vectorial Caristfs fixed point theorem with a w-distance. Finally we show that the above three theorems are equivalent to each other. The related known results are generalized and improved. In particular, some conditions in the theorems of [Y. Araya, Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16] are weakened or even completely relieved.
基金supported by the National Natural Science Foundation of China (11061023)
文摘In this paper, we introduce a concept of quasi C-lower semicontinuity for setvalued mapping and provide a vector version of Ekeland's theorem related to set-valued vector equilibrium problems. As applications, we derive an existence theorem of weakly efficient solution for set-valued vector equilibrium problems without the assumption of convexity of the constraint set and the assumptions of convexity and monotonicity of the set-valued mapping. We also obtain an existence theorem of ε-approximate solution for set-valued vector equilibrium problems without the assumptions of compactness and convexity of the constraint set.
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.
基金Supported by National Natural Science Foundation of China (Grant No. 10871141)
文摘In this paper, by using p-distances on uniform spaces, we establish a general vectorial Ekeland variational principle (in short EVP), where the objective function is defined on a uniform space and taking values in a pre-ordered real linear space and the perturbation involves a p-distance and a monotone function of the objective function. Since p-distances are very extensive, such a form of the perturbation in deed contains many different forms of perturbations appeared in the previous versions of EVP. Besides, we only require the objective function has a very weak property, as a substitute for lower semi-continuity, and only require the domain space (which is a uniform space) has a very weak type of completeness, i.e., completeness with respect to a certain p-distance. Such very weak type of completeness even includes local completeness when the uniform space is a locally convex topological vector space. From the general vectorial EVP, we deduce a general vectorial Caristi's fixed point theorem and a general vectorial Takahashi's nonconvex minimization theorem. Moreover, we show that the above three theorems are equivalent to each other. We see that the above general vectorial EVP includes many particular versions of EVP, which extend and complement the related known results.
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.
基金The project is supported by National Natural Science Foundation of China
文摘The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these two theorems in the probabilistic metric space. The resultspresented in this paper generalize the corresponding results of [9--12].
基金Supported by National Natural Science Foundation of China(Grant No.11471236)
文摘By using sequentially lower complete spaces(see [Zhu, J., Wei, L., Zhu, C. C.: Caristi type coincidence point theorem in topological spaces. J. Applied Math., 2013, ID 902692(2013)]), we give a new version of vectorial Ekeland's variational principle. In the new version, the objective function is defined on a sequentially lower complete space and taking values in a quasi-ordered locally convex space, and the perturbation consists of a weakly countably compact set and a non-negative function p which only needs to satisfy p(x, y) = 0 iff x = y. Here, the function p need not satisfy the subadditivity.From the new Ekeland's principle, we deduce a vectorial Caristi's fixed point theorem and a vectorial Takahashi's non-convex minimization theorem. Moreover, we show that the above three theorems are equivalent to each other. By considering some particular cases, we obtain a number of corollaries,which include some interesting versions of fixed point theorem.
文摘Ekeland’s variational principle is a fundamental theorem in nonconves analysis. Its general statement is as the following:Ekeland’s Variational Principle"’a:. Let V be a complete metric space, and F: F—*-RU{ + °°} a lower semicontinuous function, not identically +00 and bounded from, below. Let s>0 be given, and a point u^V such thatF(u)<infF+e.vThen there exists some point v £ V such that
基金Supported by National Natural Science Foundation of China (11071198 11101347)+2 种基金Postdoctor Foundation of China (2012M510363)the Key Project in Science and Technology Research Plan of the Education Department of Hubei Province (D20112605 D20122501)
文摘The existence and multiplicity of positive solutions are studied for a class of quasi- linear elliptic equations involving Sobolev critical exponents with mixed Dirichlet-Neumann boundary conditions by the variational methods and some analytical techniques.
文摘From the viewpoint of continuous systems, optimal control problem is proposed for a class of controlled Hybrid dynamical systems. Then a mathematical method- HDS minimum principle is put forward, which can solve the above problem. The HDS minimum principle is proved by means of Ekeland' s variational principle.