A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pa...A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pacific.Using timeseries of various oceanic data from 2013 to 2017,the variability of eco-hydro-climatic conditions response to the 2015/2016 super El Niño in the upper 300 m of the MD region are analyzed in this paper.Results showed that during the 2015/2016 super El Niño event,the upwelling in the MD region was greatly enhanced compared to those before and after this El Niño event.Upwelling Rossby waves and the massive loss of surface water in the western Pacific were suggested to be the main reasons for this enhanced upwelling.De-creased precipitation caused by changes in large-scale air-sea interaction led to the increased surface salinities.Changes in the struc-tures of the thermohaline and nutrient distribution in deep waters contributed to the increased surface chlorophyll a,suggesting a po-sitive effect of El Niño on surface carbon storage in the MD region.Based on the above analysis,the synopsis mechanism illustrating the eco-hydro-climatic changing processes over the MD upwelling system responding to the El Niño event was proposed.It high-lights the prospect for the role played by El Niño in local eco-hydro-climatic effects,which has further profound implications for understanding the influence of the global climate changes on the ocean carbon cycle.展开更多
The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in...The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in the decaying years of the super El Nino events.This study discusses the causes of late TC onsets related with atmospheric circulation,disturbance sources and trigger mechanisms.The analysis shows that the western North Pacific subtropical high(WNPSH)from January–June during the decaying years of the super El Nino events were stronger than the climatic mean,which resulted in a relatively stable atmospheric state by inhibiting deep convection.As a disturbance source,the April–June intertropical convergence zone(ITCZ)during the decaying years of the super El Nino events were significantly weaker than its climatic mean.The cross-equatorial flow and monsoon trough,as important TC generation triggers,were weaker from April–June during the decaying years of the super El Nino events,which further reduced the probability of TC generation.As for the late TC onsets,the role of atmospheric circulation anomalies(i.e.,subtropical-high,the ITCZ,cross-equatorial flow,and monsoon trough)were more important.The cross-equatorial flow may take as predictor of TC onsets in the decaying years of the super El Nino events.展开更多
The 2015/16 super El Ni?o event has been widely recognized as comparable to the 1982/83 and 1997/98 El Ni?o events.This study examines the main features of upper-ocean dynamics in this new super event,contrasts them...The 2015/16 super El Ni?o event has been widely recognized as comparable to the 1982/83 and 1997/98 El Ni?o events.This study examines the main features of upper-ocean dynamics in this new super event,contrasts them to those in the two historical super events,and quantitatively compares the major oceanic dynamical feedbacks based on a mixed-layer heat budget analysis of the tropical Pacific.During the early stage,this new event is characterized by an eastward propagation of SST anomalies and a weak warm-pool El Ni?o;whereas during its mature phase,it is characterized by a weak westward propagation and a westward-shifted SST anomaly center,mainly due to the strong easterly wind and cold upwelling anomalies in the far eastern Pacific,as well as the westward anomalies of equatorial zonal current and subsurface ocean temperature.The heat budget analysis shows that the thermocline feedback is the most crucial process inducing the SST anomaly growth and phase transition of all the super events,and particularly for this new event,the zonal advective feedback also exerts an important impact on the formation of the strong warming and westward-shifted pattern of SST anomalies.During this event,several westerly wind burst events occur,and oceanic Kelvin waves propagate eastwards before being maintained over eastern Pacific in the mature stage.Meanwhile,there is no evidence for westward propagation of the off-equatorial oceanic Rossby waves though the discharging process of equatorial heat during the development and mature stages.The second generation El Ni?o prediction system of the Beijing Climate Center produced reasonable event real-time operational prediction during 2014–16,wherein the statistical prediction model that considers the preceding oceanic precursors plays an important role in the multi-method ensemble prediction of this super.展开更多
采用CAM3(Community Atmosphere Model Version3)模式中海气湍流通量参数化原方案和改进方案,利用观测海温驱动CAM3模式进行气候模拟,以分析模式对厄尔尼诺事件影响气候变化的模拟能力。结果表明,采用CAM3模式海气湍流通量参数化改进方...采用CAM3(Community Atmosphere Model Version3)模式中海气湍流通量参数化原方案和改进方案,利用观测海温驱动CAM3模式进行气候模拟,以分析模式对厄尔尼诺事件影响气候变化的模拟能力。结果表明,采用CAM3模式海气湍流通量参数化改进方案,模式能够更好地模拟出由厄尔尼诺事件引起的北太平洋和北美地区大气环流的变化,尤其是对厄尔尼诺年冬季阿留申低压强度和与PNA遥相关型有关的500hPa位势高度异常的模拟。展开更多
基金supported by the Strategic Prio-rity Research Program of the Chinese Academy of Sciences(Nos.XDB42010203,XDA19060401)the Science&Te-chnology Basic Resources Investigation Program of China(No.2017FY100802)+1 种基金the Open fund for Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences(No.MGE2019KG03)Post-Doctoral Program in Qingdao in 2019(No.Y9KY161).
文摘A super El Niño event occurred in the equatorial Pacific during 2015-2016,accompanied by considerable regional eco-hydro-climatic variations within the Mindanao Dome(MD)upwelling system in the tropical western Pacific.Using timeseries of various oceanic data from 2013 to 2017,the variability of eco-hydro-climatic conditions response to the 2015/2016 super El Niño in the upper 300 m of the MD region are analyzed in this paper.Results showed that during the 2015/2016 super El Niño event,the upwelling in the MD region was greatly enhanced compared to those before and after this El Niño event.Upwelling Rossby waves and the massive loss of surface water in the western Pacific were suggested to be the main reasons for this enhanced upwelling.De-creased precipitation caused by changes in large-scale air-sea interaction led to the increased surface salinities.Changes in the struc-tures of the thermohaline and nutrient distribution in deep waters contributed to the increased surface chlorophyll a,suggesting a po-sitive effect of El Niño on surface carbon storage in the MD region.Based on the above analysis,the synopsis mechanism illustrating the eco-hydro-climatic changing processes over the MD upwelling system responding to the El Niño event was proposed.It high-lights the prospect for the role played by El Niño in local eco-hydro-climatic effects,which has further profound implications for understanding the influence of the global climate changes on the ocean carbon cycle.
基金The National Key Research and Development Program for Developing Basic Sciences under contract No.2016YFC1401601the National Natural Science Foundation of China under contract No.41576026
文摘The 2015/2016 El Nino event reached the threshold of super El Nino event,and was comparable to the super events in 1982/1983 and 1997/1998.Interestingly,the tropical cyclones(TCs)were found to have very late onsets in the decaying years of the super El Nino events.This study discusses the causes of late TC onsets related with atmospheric circulation,disturbance sources and trigger mechanisms.The analysis shows that the western North Pacific subtropical high(WNPSH)from January–June during the decaying years of the super El Nino events were stronger than the climatic mean,which resulted in a relatively stable atmospheric state by inhibiting deep convection.As a disturbance source,the April–June intertropical convergence zone(ITCZ)during the decaying years of the super El Nino events were significantly weaker than its climatic mean.The cross-equatorial flow and monsoon trough,as important TC generation triggers,were weaker from April–June during the decaying years of the super El Nino events,which further reduced the probability of TC generation.As for the late TC onsets,the role of atmospheric circulation anomalies(i.e.,subtropical-high,the ITCZ,cross-equatorial flow,and monsoon trough)were more important.The cross-equatorial flow may take as predictor of TC onsets in the decaying years of the super El Nino events.
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund(GYHY201506013)National Natural Science Foundation of China(41606019,41605116,and 41405080)Project for Development of Key Techniques in Meteorological Operation Forecasting(YBGJXM201705)
文摘The 2015/16 super El Ni?o event has been widely recognized as comparable to the 1982/83 and 1997/98 El Ni?o events.This study examines the main features of upper-ocean dynamics in this new super event,contrasts them to those in the two historical super events,and quantitatively compares the major oceanic dynamical feedbacks based on a mixed-layer heat budget analysis of the tropical Pacific.During the early stage,this new event is characterized by an eastward propagation of SST anomalies and a weak warm-pool El Ni?o;whereas during its mature phase,it is characterized by a weak westward propagation and a westward-shifted SST anomaly center,mainly due to the strong easterly wind and cold upwelling anomalies in the far eastern Pacific,as well as the westward anomalies of equatorial zonal current and subsurface ocean temperature.The heat budget analysis shows that the thermocline feedback is the most crucial process inducing the SST anomaly growth and phase transition of all the super events,and particularly for this new event,the zonal advective feedback also exerts an important impact on the formation of the strong warming and westward-shifted pattern of SST anomalies.During this event,several westerly wind burst events occur,and oceanic Kelvin waves propagate eastwards before being maintained over eastern Pacific in the mature stage.Meanwhile,there is no evidence for westward propagation of the off-equatorial oceanic Rossby waves though the discharging process of equatorial heat during the development and mature stages.The second generation El Ni?o prediction system of the Beijing Climate Center produced reasonable event real-time operational prediction during 2014–16,wherein the statistical prediction model that considers the preceding oceanic precursors plays an important role in the multi-method ensemble prediction of this super.
文摘采用CAM3(Community Atmosphere Model Version3)模式中海气湍流通量参数化原方案和改进方案,利用观测海温驱动CAM3模式进行气候模拟,以分析模式对厄尔尼诺事件影响气候变化的模拟能力。结果表明,采用CAM3模式海气湍流通量参数化改进方案,模式能够更好地模拟出由厄尔尼诺事件引起的北太平洋和北美地区大气环流的变化,尤其是对厄尔尼诺年冬季阿留申低压强度和与PNA遥相关型有关的500hPa位势高度异常的模拟。