A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh's formalism. Motivated by strong engineering demands to design new composite materials...A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh's formalism. Motivated by strong engineering demands to design new composite materials, the authors perform numerical analysis of interface crack tip singularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Polymer, Al2O3, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-TA, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than commercial piezoelectric ceramics is treated as a special transversely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: r^-1/2±iε and r^-1/2, which is quite different from that in the impermeable interface crack. It can be concluded that different far field loading cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the electric field induced crack growth is well explained, which provides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials.展开更多
The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material mult...The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.展开更多
The unpredictable rupture of saccular aneurysms especially of the intracerebral aneurysm is a knotty problem that always results in high mortality. Traditional diagnosis of medical images, which gives the aneurysm siz...The unpredictable rupture of saccular aneurysms especially of the intracerebral aneurysm is a knotty problem that always results in high mortality. Traditional diagnosis of medical images, which gives the aneurysm size and compares with a speculated critical size from clinical statistics, was demonstrated inadequate to forecasting rupture. Here, we propose a new detecting strategy that uses a dielectric elastomer (DE) capacitance sensor to monitor the growth of saccular aneurysms and deliver both the wall stress and geometric parameters, Based on the elastic growth theory together with the finite deformation analyses, the correlation between the real-time output capacitance of the DE sensor and the wall stress and/or geometry of an aneurysm is derived. Compared to clinic statistics and biomechanics simulations, the wall stress and geometric size may be used as combined indicators to assess the rupture risk of a saccular aneurysm, Numerical results show that an output relative capacitance of 30 indicates a high risk of rupture, Finally, the sensitivity and resolution of the DE sensor are proved adequately high for monitoring the growth state and evaluating the rupture risk of a saccular aneurysm.展开更多
基金the National Natural Science Foundation of China(10572110)Doctor Foundation of the Chinese Education MinistryDoctorate Foundation of Xi'an Jiaotong University.
文摘A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh's formalism. Motivated by strong engineering demands to design new composite materials, the authors perform numerical analysis of interface crack tip singularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Polymer, Al2O3, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-TA, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than commercial piezoelectric ceramics is treated as a special transversely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: r^-1/2±iε and r^-1/2, which is quite different from that in the impermeable interface crack. It can be concluded that different far field loading cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the electric field induced crack growth is well explained, which provides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials.
文摘The overall mechanical and electrical behaviors of elastic dielectric composites are investigated with the aid of the concept of material multipoles. In particular, by introducing a statistical continuum material multipole theory, the effects of the electric-elastic interaction and the microstructure (size, shape, orientation,...) of inhomogeneous particles on the overall behaviors of the composites can be obtained. A basic solution for an ellipsoidal elastic inhomogeneity with electric polarization in an infinite elastic dielectric medium is first given, which shows that classical Eshelby 's elastic solution is modified by the presence of electric-elastic interaction. The overall macroscopic constitutive relations and their overall macroscopic material parameters accounting for electroelastic interaction effect are then derived for the elastic dielectric composites. Some quantitative calculations on the problems with statistical anisotropy, the shape effect and the electric-elastic interaction are finally given for dilute composites.
基金supported by the National Natural Science Foundation of China(11322216,11621062,and 11321202)the Zhejiang Provincial Natural Science Foundation(LR13A020001)
文摘The unpredictable rupture of saccular aneurysms especially of the intracerebral aneurysm is a knotty problem that always results in high mortality. Traditional diagnosis of medical images, which gives the aneurysm size and compares with a speculated critical size from clinical statistics, was demonstrated inadequate to forecasting rupture. Here, we propose a new detecting strategy that uses a dielectric elastomer (DE) capacitance sensor to monitor the growth of saccular aneurysms and deliver both the wall stress and geometric parameters, Based on the elastic growth theory together with the finite deformation analyses, the correlation between the real-time output capacitance of the DE sensor and the wall stress and/or geometry of an aneurysm is derived. Compared to clinic statistics and biomechanics simulations, the wall stress and geometric size may be used as combined indicators to assess the rupture risk of a saccular aneurysm, Numerical results show that an output relative capacitance of 30 indicates a high risk of rupture, Finally, the sensitivity and resolution of the DE sensor are proved adequately high for monitoring the growth state and evaluating the rupture risk of a saccular aneurysm.