Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an...Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an example. Some new characteristics of the self-excited vibration in this kind of system are found. The conditions under which self-excited vibration occurs at low-order or high-order modes are discussed. Effects of changes in parameters of the system on the self-excited vibration are analyzed. The vibration mechanism of the water droplets spurting phenomenon of the Chinese cultural relic dragon washbasin is further explained. This investigation presents a new idea for modeling the self-excited vibration caused by dry friction interaction between two elastic structures.展开更多
Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pres...The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(Vp) and shear wave velocity(Vs) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle.展开更多
Ocean boundaries present a significant effect on the vibroacoustic characteristics and sound propagation of an elastic structure in practice.In this study,an efficient finite element/wave superposition method(FE/WSM)f...Ocean boundaries present a significant effect on the vibroacoustic characteristics and sound propagation of an elastic structure in practice.In this study,an efficient finite element/wave superposition method(FE/WSM)for predicting the three-dimen-sional acoustic radiation from an arbitrary-shaped radiator in Pekeris waveguides with a lossy seabed is proposed.The method is based on the FE method(FEM),WSM,and sound propagation models.First,a near-field vibroacoustic model is established by the FEM to obtain vibration information on a radiator surface.Then,the WSM based on the Helmholtz boundary integral is used to pre-dict the far-field acoustic radiation and propagation.Furthermore,the rigorous image source method and complex normal mode are employed to obtain the near-and far-field Green’s function(GF),respectively.The former,which is based on the spherical wave decomposition,is adopted to accurately solve the near-field source strength,and the far-field acoustic radiation is calculated by the latter and perturbation theory.The simulations of both models are compared to theoretical wavenumber integration solutions.Finally,numerical experiments on elastic spherical and cylindrical shells in Pekeris waveguides are presented to validate the accuracy and efficiency of the proposed method.The results show that the FE/WSM is adaptable to complex radiators and ocean-acoustic envi-ronments,and are easy to implement and computationally efficient in calculating the structural vibration,acoustic radiation,and sound propagation of arbitrarily shaped radiators in practical ocean environments.展开更多
The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that o...The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.展开更多
The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improv...The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.展开更多
The structural, electronic and elastic properties of YCu compound in the B2 (CsCl) phase were investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA). The elect...The structural, electronic and elastic properties of YCu compound in the B2 (CsCl) phase were investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA). The electronic density of states (DOS) obtained in this way accorded weU with the results of a recent study utilizing the full-potential linearized augmented plane wave (FLAPW) method. We also found that the density of d-states at the Fermi energy was low. The calculated equilibrium properties such as lattice constant, bulk modulus and its first derivative, and the elastic constants were in good agreement with experimental and theoretical results.展开更多
The strain monitoring and stress analysis of a new type of post-prestressed tunnel liner were carried out. The instrumentation block of the tunnel liner, with the dimensions of 12.06 m in length, 6 500 mm in diameter,...The strain monitoring and stress analysis of a new type of post-prestressed tunnel liner were carried out. The instrumentation block of the tunnel liner, with the dimensions of 12.06 m in length, 6 500 mm in diameter, and 650 mm in thickness, was post-prestressed with the unbonded tendons, each of which consists of 8 pieces of double-looped strands and the axial spacing of the tendons is 500 mm. Concrete strain meters, rebar meters, load cell and zero-stress meters were installed for the strain monitoring. The tensioning loads were applied incrementally in three cycles (50%, 77% and 100%) at the concrete age of 28 d and the tensioning work lasted for 187.1 h. Strain readings were taken before and after each cycle during tensioning period and at the specified time interval after tensioning period. It is found that concrete creep developed over tensioning period is 30% of total strain and 41.5% of elastic strain respectively. Prestress force in the unbonded tendon and concrete stress in the liner were evaluated according to the observed strain variations. Both of them are time-dependent, and about 5.3%, 8.3% and 9.0% of the prestress losses are observed at the age of 1 d, 30 d and 60 d respectively after stressing. The distribution of prestress in the liner is relatively uniform and meets the design requirement.展开更多
The structural, electronic, elastic and magnetic properties of cerium, praseodymium and their hydrides REH x(RE=Ce, Pr and x=2, 3) were investigated by the first principles calculations based on density functional t...The structural, electronic, elastic and magnetic properties of cerium, praseodymium and their hydrides REH x(RE=Ce, Pr and x=2, 3) were investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At zero pressure all the hydrides were stable in the ferromagnetic state. The calculated lattice parameters were in good agreement with the experimental results. The bulk modulus decreased with the increase in the hydrogen content for these hydrides. The electronic structure revealed that di-hydrides were metallic whereas trihydrides were half metallic at zero pressure. A pressure-induced structural phase transition from cubic to hexagonal phase was predicted in these hydrides. The computed elastic constants indicated that these hydrides were mechanically stable at zero pressure. The calculated Debye temperature values were in good agreement with experimental and other theoretical results. A half metallic to metallic transition was also observed in REH3 under high pressure. Ferromagnetism was quenched in these hydrides at high pressures.展开更多
In this paper, we consider the partial differential equation of an elastic beam with structuraldamping by boundary feedback control. First, we prove this closed system is well--posed; then weestablish tbe exponential ...In this paper, we consider the partial differential equation of an elastic beam with structuraldamping by boundary feedback control. First, we prove this closed system is well--posed; then weestablish tbe exponential stability for this elastic system by using a theorem whichbelongs to F. L.Huang; finally, we discuss the distribution and multiplicity of the spectrum of this system. Theseresults are very important and useful in practical applications.展开更多
The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynami...The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.展开更多
The localization factor is used to describe the band structures for P wave propagating normally in the nanoscaled nearly periodic layered phononic crystals. The localization factor is calculated by the transfer matrix...The localization factor is used to describe the band structures for P wave propagating normally in the nanoscaled nearly periodic layered phononic crystals. The localization factor is calculated by the transfer matrix method based on the nonlocal elastic continuum theory.Three kinds of nearly periodic arrangements are concerned, i.e., random disorder, quasiperiodicity and defects. The influences of randomly disordered degree of the sub-layer's thickness and mass density, the arrangement of quasi-periodicity and the location of defect on the band structures and cut-off frequency are analyzed in detail.展开更多
Easy machining into sharp lending edge, nose tip and complex shape components plays a pivotal role in the application of ultrahigh temperature ceramics in hypersonic vehicles, wherein low and controllable hardness is ...Easy machining into sharp lending edge, nose tip and complex shape components plays a pivotal role in the application of ultrahigh temperature ceramics in hypersonic vehicles, wherein low and controllable hardness is a necessary parameter to ensure the easy machinability. However, the mechanism that driving the hardness of metal hexaborides is not clear. Here, using a combination of the empirical hardness model for polycrystalline materials and density functional theory investigation, the hardness dependence on shear anisotropic factors of high temperature metal hexaborides has been established. It has come to light that through controlling the shear anisotropic factors the hardness of polycrystalline metal hexaborides can be tailored from soft and ductile to extremely hard and brittle, which is underpinned by the degree of chemical bonding anisotropy, i.e., the difference of B-B bond within the B;octahedron and that connecting the B;octahedra.展开更多
The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investi...The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investigated. Low molecular weight polystyrene was chosen to obtain uniformly solubilized nano-blends without macrophase separation. The specimens were solution-cast by adding different amounts of homo-polystyrene to acquire different microphase structures. Small angle X-ray scattering(SAXS), transmission electron microscopy(TEM) and atom force microscopy(AFM) have been used to study the microdomain and grain structure. It is observed that the structural changes in d-spacing and grain size on account of different amounts of polystyrene alter the mechanical behavior in both monotonic tensile and cyclic tests. The elastic and the Mullins effects are strongly sensitive to the changes in d-spacing and grain sizes. Moreover, the sample with bi-continuous structure shows the largest tensile strength and Mullins effect. In addition, the Mooneye-Rivlin phenomenological model was used to evaluate and explore the relationship between the polymer topological networks and the rubber elasticity of these styrenic nano-blends.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘Based on our previous work([1]), self-excited vibration of a multi-degree-of-freedom system caused by dry friction between two elastic structures is investigated using the Chinese cultural relic dragon washbasin as an example. Some new characteristics of the self-excited vibration in this kind of system are found. The conditions under which self-excited vibration occurs at low-order or high-order modes are discussed. Effects of changes in parameters of the system on the self-excited vibration are analyzed. The vibration mechanism of the water droplets spurting phenomenon of the Chinese cultural relic dragon washbasin is further explained. This investigation presents a new idea for modeling the self-excited vibration caused by dry friction interaction between two elastic structures.
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
基金Project supported by the Science Fund from the Key Laboratory of Earthquake Prediction,Institute of Earthquake Science,China Earthquake Administration(Grant No.2016IES010104)the National Natural Science Foundation of China(Grant Nos.41174071,41273073,41373060,and 41573121)
文摘The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(Vp) and shear wave velocity(Vs) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle.
基金financially supported by the National Key Research and Development Plan of China (No. 2016YFC1401203)the National Natural Science Foundation of China (Nos. 42006168 and 11404079)
文摘Ocean boundaries present a significant effect on the vibroacoustic characteristics and sound propagation of an elastic structure in practice.In this study,an efficient finite element/wave superposition method(FE/WSM)for predicting the three-dimen-sional acoustic radiation from an arbitrary-shaped radiator in Pekeris waveguides with a lossy seabed is proposed.The method is based on the FE method(FEM),WSM,and sound propagation models.First,a near-field vibroacoustic model is established by the FEM to obtain vibration information on a radiator surface.Then,the WSM based on the Helmholtz boundary integral is used to pre-dict the far-field acoustic radiation and propagation.Furthermore,the rigorous image source method and complex normal mode are employed to obtain the near-and far-field Green’s function(GF),respectively.The former,which is based on the spherical wave decomposition,is adopted to accurately solve the near-field source strength,and the far-field acoustic radiation is calculated by the latter and perturbation theory.The simulations of both models are compared to theoretical wavenumber integration solutions.Finally,numerical experiments on elastic spherical and cylindrical shells in Pekeris waveguides are presented to validate the accuracy and efficiency of the proposed method.The results show that the FE/WSM is adaptable to complex radiators and ocean-acoustic envi-ronments,and are easy to implement and computationally efficient in calculating the structural vibration,acoustic radiation,and sound propagation of arbitrarily shaped radiators in practical ocean environments.
基金Project(51574176)supported by the National Natural Science Foundation of ChinaProject(143020142-S)supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province(TYAL),ChinaProject(201603D421028)supported by the Key Research and Development Program of Shanxi Province(International Cooperative Project),China
文摘The elastic properties, thermodynamic and electronic structures of Mg_2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C_(11) more than that of C_(12) and C_(44). Specifically, higher pressure leads to greater bulk modulus(B), shear modulus(G), and elastic modulus(E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume(V/V_0), bulk modulus(B), heat capacity(C_v), thermal expansion coefficient(α), and Debye temperature(■). Finally, the electronic structures associated with the density of states(DOS) and Mulliken population are analyzed.
文摘The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of Cd Se_(1-x)Te_x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA + U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure Cd Se and Cd Te binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.
基金supported by Gazi University Research Project Unit (05/2007/18)Hacettepe University (0701602005)
文摘The structural, electronic and elastic properties of YCu compound in the B2 (CsCl) phase were investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA). The electronic density of states (DOS) obtained in this way accorded weU with the results of a recent study utilizing the full-potential linearized augmented plane wave (FLAPW) method. We also found that the density of d-states at the Fermi energy was low. The calculated equilibrium properties such as lattice constant, bulk modulus and its first derivative, and the elastic constants were in good agreement with experimental and theoretical results.
基金Supported by National Natural Science Foundation of China (No. 50578110) .
文摘The strain monitoring and stress analysis of a new type of post-prestressed tunnel liner were carried out. The instrumentation block of the tunnel liner, with the dimensions of 12.06 m in length, 6 500 mm in diameter, and 650 mm in thickness, was post-prestressed with the unbonded tendons, each of which consists of 8 pieces of double-looped strands and the axial spacing of the tendons is 500 mm. Concrete strain meters, rebar meters, load cell and zero-stress meters were installed for the strain monitoring. The tensioning loads were applied incrementally in three cycles (50%, 77% and 100%) at the concrete age of 28 d and the tensioning work lasted for 187.1 h. Strain readings were taken before and after each cycle during tensioning period and at the specified time interval after tensioning period. It is found that concrete creep developed over tensioning period is 30% of total strain and 41.5% of elastic strain respectively. Prestress force in the unbonded tendon and concrete stress in the liner were evaluated according to the observed strain variations. Both of them are time-dependent, and about 5.3%, 8.3% and 9.0% of the prestress losses are observed at the age of 1 d, 30 d and 60 d respectively after stressing. The distribution of prestress in the liner is relatively uniform and meets the design requirement.
文摘The structural, electronic, elastic and magnetic properties of cerium, praseodymium and their hydrides REH x(RE=Ce, Pr and x=2, 3) were investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At zero pressure all the hydrides were stable in the ferromagnetic state. The calculated lattice parameters were in good agreement with the experimental results. The bulk modulus decreased with the increase in the hydrogen content for these hydrides. The electronic structure revealed that di-hydrides were metallic whereas trihydrides were half metallic at zero pressure. A pressure-induced structural phase transition from cubic to hexagonal phase was predicted in these hydrides. The computed elastic constants indicated that these hydrides were mechanically stable at zero pressure. The calculated Debye temperature values were in good agreement with experimental and other theoretical results. A half metallic to metallic transition was also observed in REH3 under high pressure. Ferromagnetism was quenched in these hydrides at high pressures.
文摘In this paper, we consider the partial differential equation of an elastic beam with structuraldamping by boundary feedback control. First, we prove this closed system is well--posed; then weestablish tbe exponential stability for this elastic system by using a theorem whichbelongs to F. L.Huang; finally, we discuss the distribution and multiplicity of the spectrum of this system. Theseresults are very important and useful in practical applications.
基金This study was supported by the National Natural Science Foundation of China under Grant Nos. 11347007 and 11674131, the Qing Lan Project, the Colleges and Universities in Jiangsu Province Natural Science Research Project under Grant No 14KJB460013, and the Priority Academic Program Develop- ment of Jiangsu Higher Education Institutions. Y. L. Li thanks the support from the Chinese Scholarship Council. C. M. Hao thanks the support from the Postgraduate Research 8z Practice Innovation Program of Jiangsu Province under Grant No. KYCX17_1652.
文摘The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.
基金support by the National Science Foundation under Grant no. 11272043
文摘The localization factor is used to describe the band structures for P wave propagating normally in the nanoscaled nearly periodic layered phononic crystals. The localization factor is calculated by the transfer matrix method based on the nonlocal elastic continuum theory.Three kinds of nearly periodic arrangements are concerned, i.e., random disorder, quasiperiodicity and defects. The influences of randomly disordered degree of the sub-layer's thickness and mass density, the arrangement of quasi-periodicity and the location of defect on the band structures and cut-off frequency are analyzed in detail.
基金pupported by the National Natural Science Foundation of China under Grant Nos. U1435206 and 51672064Beijing Municipal Science & Technology Commission under Grant Nos. Z151100003315012 and D16110000241600
文摘Easy machining into sharp lending edge, nose tip and complex shape components plays a pivotal role in the application of ultrahigh temperature ceramics in hypersonic vehicles, wherein low and controllable hardness is a necessary parameter to ensure the easy machinability. However, the mechanism that driving the hardness of metal hexaborides is not clear. Here, using a combination of the empirical hardness model for polycrystalline materials and density functional theory investigation, the hardness dependence on shear anisotropic factors of high temperature metal hexaborides has been established. It has come to light that through controlling the shear anisotropic factors the hardness of polycrystalline metal hexaborides can be tailored from soft and ductile to extremely hard and brittle, which is underpinned by the degree of chemical bonding anisotropy, i.e., the difference of B-B bond within the B;octahedron and that connecting the B;octahedra.
基金financially supported by the National Natural Science Foundation of China(Nos.51173112 and 51121001)the Special Funds for Major State Basic Research Projects of China(No.2011CB606006)
文摘The relationship between microphase structure and mechanical response of the binary blends consisting of polystyrene-block-polyisoprene-block-polystyrene copolymer and low molecular weight polystyrene has been investigated. Low molecular weight polystyrene was chosen to obtain uniformly solubilized nano-blends without macrophase separation. The specimens were solution-cast by adding different amounts of homo-polystyrene to acquire different microphase structures. Small angle X-ray scattering(SAXS), transmission electron microscopy(TEM) and atom force microscopy(AFM) have been used to study the microdomain and grain structure. It is observed that the structural changes in d-spacing and grain size on account of different amounts of polystyrene alter the mechanical behavior in both monotonic tensile and cyclic tests. The elastic and the Mullins effects are strongly sensitive to the changes in d-spacing and grain sizes. Moreover, the sample with bi-continuous structure shows the largest tensile strength and Mullins effect. In addition, the Mooneye-Rivlin phenomenological model was used to evaluate and explore the relationship between the polymer topological networks and the rubber elasticity of these styrenic nano-blends.