In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equ...In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.展开更多
The phase separation in Ni75AlxV25-x alloys incorporated with the elastic stress was investigated using the microscopic phase-field model. The final morphology ofγ' andθis similar in spatial alignment, but the v...The phase separation in Ni75AlxV25-x alloys incorporated with the elastic stress was investigated using the microscopic phase-field model. The final morphology ofγ' andθis similar in spatial alignment, but the volume fraction ofγ' phase increases and that ofθdecreases as the Al concentration increases. For the small elastic interactions of early-stage phase separation, the coarsening ofγ' andθcan be approximated by a linear growth law as predicated by Lifshitz and Slyozov and Wangner (LSW) theory. As the elastic interactions increase at late-stage coarsening, the growth rate decreases, and the growth presents quick increase at early-stage and slows down at late-stage.展开更多
Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessa...Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessary step in elastic RTM to avoid crosstalk between coupled wavefields.However,the current curl-divergence operator-based separation method has a polarity reversal problem in PS imaging,and vector separation methods often have separation artifacts at the interface,which affects the quality of the imaging stack.We propose a non-artifact P-and S-wave separation method based on the first-order velocity-strain equation.This equation is used for wavefield extrapolation and separation in the first-order staggered-grid finite-difference scheme,and the storage and calculation amounts are consistent with the classical first-order velocity-stress equation.The separation equation does not calculate the partial derivatives of the elastic parameters,and thus,there is no artifact in the separated Pand S-waves.During wavefield extrapolation,the dynamic characteristics of the reflected wave undergo some changes,but the transmitted wavefield is accurate;therefore,it does not affect the dynamic characteristics of the final migration imaging.Through numerical examples of 2 D simple models,part SEAM model,BP model,and 3 D 4-layer model,different wavefield separation methods and corresponding elastic RTM imaging results are analyzed.We found that the velocity-strain based elastic RTM can image subsurface structures well,without spike artifacts caused by separation artifacts,and without polarity reversal phenomenon of the PS imaging.展开更多
The dynamic scaling behaviour of late-stage phase separation and coarsening mechanisms of L12 and D022 in Ni75AlxV25-x (3 ≤ x ≤ 10, at.%) alloys are studied using the microscopic phase-field dynamic model. The mic...The dynamic scaling behaviour of late-stage phase separation and coarsening mechanisms of L12 and D022 in Ni75AlxV25-x (3 ≤ x ≤ 10, at.%) alloys are studied using the microscopic phase-field dynamic model. The microelaso ticity field is incorporated into the diffusion dynamic model. The results show the morphology and coarsening dynamics being greatly changed by the elastic interactions among different precipitates, the particles aligning along the dominant directions, the average domain size (ADS) of L12 and D022 deviating from the exponent of temporal power-law, and the growth slowing down due to the increasing of elastic interactions. The dynamic scaling regime of late-stage coarsening of the precipitates is attained. Thus the scaling behaviour of structure function is also applicable for elastic interaction systems. It is also found that the variations of ADS and scaling function depend on the volume fraction of precipitates.展开更多
The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone w...The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.展开更多
A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of s...A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems.展开更多
Our previous experimental result for proton-rich nucleus ^(8)B at above the Coulomb barrier shows that in spite of its low proton separation energy(0.136 MeV)there is no strong breakup coupling effects[1].The fact is ...Our previous experimental result for proton-rich nucleus ^(8)B at above the Coulomb barrier shows that in spite of its low proton separation energy(0.136 MeV)there is no strong breakup coupling effects[1].The fact is in contrast to the observation of neutron-rich nuclei ^(11)Be around the Coulomb barrier.A systematic study for elastic scattering cross sections of neutron-rich nucleus ^(11)Be and the proton-halo nucleus ^(8)B at low and higher energies shows that the Coulomb rainbow in the elastic scattering of ^(11)Be is still strongly suppressed at high energies[2].In order to examine the predictions,experimental measurements for 11Be elastic scattering and breakup for ^(11)Be+^(208)Pb system at 141 and 209 MeV were performed at the National Laboratory of Heavy Ion Research of the Institute of Modern Physics,Lanzhou,China.展开更多
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this...In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.展开更多
Vibrating flip-flow screens(VFFS)with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years.In this work,the discrete element method(DEM)is used to study the scr...Vibrating flip-flow screens(VFFS)with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years.In this work,the discrete element method(DEM)is used to study the screening process in VFFS to explain particle flow and separation behavior at the particle scale.Unlike traditional vibrating screens,for VFFS,the amplitude response of each point on the elastic sieve mat is different everywhere.This study measures the kinematics of the elastic sieve mat under different conditions such as different stretched lengths and material loads.To establish the elastic sieve mat model in a DEM simulation,the continuous elastic sieve mat is discretized into multiple units,and the displacement signal of each unit tested is analyzed by Fourier series.The Fourier series analysis results of each unit are used as the setting parameters for motion.In this way,the movement of the elastic sieve mat is approximately simulated,and a DEM model of VFFS is produced.Through the simulation,the flow and separation of different-sized particles in VFFS are studied,and the reasonability of the simulation is verified by a pilot-scale screening experiment.The present study demonstrates the potential of the DEM method for the analysis of screening processes in VFFS.展开更多
基金financially supported by the Natural Science Foundation of China(No.41774133)the Open Funds of SINOPEC Key Laboratory of Geophysics(No.wtyjy-wx2017-01-04)National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05024-003-011)
文摘In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.
基金Project (50071046) supported by the National Natural Science Foundation of ChinaProject (2002AA331051)supported by the National Hi-Tech Research and Development Program of ChinaProject(CX200507) supported by the the Doctorate Foundation of Northwestern Polytechnical University
文摘The phase separation in Ni75AlxV25-x alloys incorporated with the elastic stress was investigated using the microscopic phase-field model. The final morphology ofγ' andθis similar in spatial alignment, but the volume fraction ofγ' phase increases and that ofθdecreases as the Al concentration increases. For the small elastic interactions of early-stage phase separation, the coarsening ofγ' andθcan be approximated by a linear growth law as predicated by Lifshitz and Slyozov and Wangner (LSW) theory. As the elastic interactions increase at late-stage coarsening, the growth rate decreases, and the growth presents quick increase at early-stage and slows down at late-stage.
基金supported by the National Natural Science Foundation of China,Grant No.41774142
文摘Elastic reverse time migration(RTM)uses the elastic wave equation to extrapolate multicomponent seismic data to the subsurface and separate the elastic wavefield into P-and S-waves.P-and S-wave separation is a necessary step in elastic RTM to avoid crosstalk between coupled wavefields.However,the current curl-divergence operator-based separation method has a polarity reversal problem in PS imaging,and vector separation methods often have separation artifacts at the interface,which affects the quality of the imaging stack.We propose a non-artifact P-and S-wave separation method based on the first-order velocity-strain equation.This equation is used for wavefield extrapolation and separation in the first-order staggered-grid finite-difference scheme,and the storage and calculation amounts are consistent with the classical first-order velocity-stress equation.The separation equation does not calculate the partial derivatives of the elastic parameters,and thus,there is no artifact in the separated Pand S-waves.During wavefield extrapolation,the dynamic characteristics of the reflected wave undergo some changes,but the transmitted wavefield is accurate;therefore,it does not affect the dynamic characteristics of the final migration imaging.Through numerical examples of 2 D simple models,part SEAM model,BP model,and 3 D 4-layer model,different wavefield separation methods and corresponding elastic RTM imaging results are analyzed.We found that the velocity-strain based elastic RTM can image subsurface structures well,without spike artifacts caused by separation artifacts,and without polarity reversal phenomenon of the PS imaging.
基金Project supported by the National Natural Science Foundation of China (Grant No 50071046) and the National High Technology and Development Program of China (Grant No 2002AA331050), and the Doctorate Foundation of Northwestern Polytechnical University of China (Grant No CX200507).
文摘The dynamic scaling behaviour of late-stage phase separation and coarsening mechanisms of L12 and D022 in Ni75AlxV25-x (3 ≤ x ≤ 10, at.%) alloys are studied using the microscopic phase-field dynamic model. The microelaso ticity field is incorporated into the diffusion dynamic model. The results show the morphology and coarsening dynamics being greatly changed by the elastic interactions among different precipitates, the particles aligning along the dominant directions, the average domain size (ADS) of L12 and D022 deviating from the exponent of temporal power-law, and the growth slowing down due to the increasing of elastic interactions. The dynamic scaling regime of late-stage coarsening of the precipitates is attained. Thus the scaling behaviour of structure function is also applicable for elastic interaction systems. It is also found that the variations of ADS and scaling function depend on the volume fraction of precipitates.
文摘The temperature separation was discovered inside the short vortex chamber (H/D = 0.18). Experiments revealed that the highest temperature of the periphery was 465 ℃, and the lowest temperature of the central zone was -45 ℃ (the compressed air was pumped into the chamber at room temperature). The objective of this paper is to proof that this temperature separation effect cannot be explained by conventional heat transfer processes. To explain this phenomenon, the concept of PGEW (Pressure Gradient Elastic Waves) is proposed. PGEW are kind of elastic waves, which operate in compressible fluids with pressure gradients and density fluctuations. The result of PGEW propagation is a heat transfer from area of low pressure to high pressure zone. The physical model of a gas in a strong field of mass forces is proposed to substantiate the PGEW existence. This physical model is intended for the construction of a theory of PGEW. Understanding the processes associated with the PGEW permits the possibility of creating new devices for energy saving and low potential heat utilization, which have unique properties.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11361034 and 11371185)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111501110001)the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2012MS0105 and 2013ZD01 )
文摘A necessary and sufficient condition is obtained for the generalized eigenfunction systems of 2 ×2 operator matrices to be a block Schauder basis of some Hilbert space, which offers a mathematical foundation of solving symplectic elasticity problems by using the method of separation of variables. Moreover, the theoretical result is applied to two plane elasticity problems via the separable Hamiltonian systems.
文摘Our previous experimental result for proton-rich nucleus ^(8)B at above the Coulomb barrier shows that in spite of its low proton separation energy(0.136 MeV)there is no strong breakup coupling effects[1].The fact is in contrast to the observation of neutron-rich nuclei ^(11)Be around the Coulomb barrier.A systematic study for elastic scattering cross sections of neutron-rich nucleus ^(11)Be and the proton-halo nucleus ^(8)B at low and higher energies shows that the Coulomb rainbow in the elastic scattering of ^(11)Be is still strongly suppressed at high energies[2].In order to examine the predictions,experimental measurements for 11Be elastic scattering and breakup for ^(11)Be+^(208)Pb system at 141 and 209 MeV were performed at the National Laboratory of Heavy Ion Research of the Institute of Modern Physics,Lanzhou,China.
基金partially supported by China National Major Science and Technology Project (Subproject No:2011ZX05024-001-03)
文摘In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements.
基金supported by the Fundamental Research Funds for the Central Universities (grant No.2021YJSHH32)Anhui Province Major Science and Technology Achievements Engineering Research and Development Special Project (grant No.202103c08020007).
文摘Vibrating flip-flow screens(VFFS)with stretchable polyurethane sieve mats have been widely used in screening fine-grained materials in recent years.In this work,the discrete element method(DEM)is used to study the screening process in VFFS to explain particle flow and separation behavior at the particle scale.Unlike traditional vibrating screens,for VFFS,the amplitude response of each point on the elastic sieve mat is different everywhere.This study measures the kinematics of the elastic sieve mat under different conditions such as different stretched lengths and material loads.To establish the elastic sieve mat model in a DEM simulation,the continuous elastic sieve mat is discretized into multiple units,and the displacement signal of each unit tested is analyzed by Fourier series.The Fourier series analysis results of each unit are used as the setting parameters for motion.In this way,the movement of the elastic sieve mat is approximately simulated,and a DEM model of VFFS is produced.Through the simulation,the flow and separation of different-sized particles in VFFS are studied,and the reasonability of the simulation is verified by a pilot-scale screening experiment.The present study demonstrates the potential of the DEM method for the analysis of screening processes in VFFS.