期刊文献+
共找到2,550篇文章
< 1 2 128 >
每页显示 20 50 100
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
1
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
Prediction model of surrounding rock deformation in doublecontinuous-arch tunnel based on the ABC-WNN
2
作者 Yahui Zhang 《Railway Sciences》 2024年第6期717-730,共14页
Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization... Purpose–The wavelet neural network(WNN)has the drawbacks of slow convergence speed and easy falling into local optima in data prediction.Although the artificial bee colony(ABC)algorithm has strong global optimization ability and fast convergence speed,it also has the drawbacks of slow speed while finding the optimal solution and weak optimization ability in the later stage.Design/methodology/approach–This article uses an ABC algorithm to optimize the WNN and establishes an ABC-WNN analysis model.Based on the example of the Jinan Yuhan underground tunnel project,the deformation of the surrounding rock of the double-arch tunnel crossing the fault fracture zone is predicted and analyzed,and the analysis results are compared with the actual detection amount.Findings–The comparison results show that the predicted values of the ABC-WNN model have a high degree of fitting with the actual engineering data,with a maximum relative error of only 4.73%.On this basis,the results show that the statistical features of ABC-WNN are the lowest,with the errors at 0.566 and 0.573,compared with the single back propagation(BP)neural network model and WNN model.Therefore,it can be derived that the ABC-WNN model has higher prediction accuracy,better computational stability and faster convergence speed for deformation.Originality/value–This article uses firstly the ABC-WNN for the deformation analysis of double-arch tunnels.This attempt laid the foundation for artificial intelligence prediction in deformation analysis of multiarch tunnels and small clearance tunnels.It can provide a new and effective way for deformation prediction in similar projects. 展开更多
关键词 Double arch tunnel deformation prediction Artificial bee colonies surrounding rock Wavelet neural network
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
3
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress 被引量:24
4
作者 WU Xing-yu JIANG Li-shuai +3 位作者 XU Xing-gang GUO Tao ZHANG Pei-peng HUANG Wan-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期543-555,共13页
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a... In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances. 展开更多
关键词 static-dynamic coupling stress(SDCS) deep roadway surrounding rock stability numerical simulation roadway deformation plastic failure of surrounding rock
下载PDF
Deformation characteristics of surrounding rock of broken and soft rock roadway 被引量:26
5
作者 WANG Jin-xi LIN Ming-yue +1 位作者 TIAN Duan-xin ZHAO Cun-liang 《Mining Science and Technology》 EI CAS 2009年第2期205-209,共5页
A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat... A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations. 展开更多
关键词 soft rock roadway broken surrounding rock similarity simulation numerical simulation deformation characteristics
下载PDF
Influence of underground water seepage flow on surrounding rock deformation of multi-arch tunnel 被引量:11
6
作者 李夕兵 张伟 +1 位作者 李地元 王其胜 《Journal of Central South University of Technology》 EI 2008年第1期69-74,共6页
Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underg... Based on a typical multi-arch tunnel in a freeway, the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D) was used to calculate the surrounding rock deformation of the tunnel under which the effect of underground water seepage flow was taken into account or not. The distribution of displacement field around the multi-arch tunnel, which is influenced by the seepage field, was gained. The result indicates that the settlement values of the vault derived from coupling analysis are bigger when considering the seepage flow effect than that not considering. Through the contrast of arch subsidence quantities calculated by two kinds of computation situations, and the comparison between the calculated and measured value of tunnel vault settlement, it is found that the calculated value(5.7-6.0 mm) derived from considering the seepage effect is more close to the measured value(5.8-6.8 mm). Therefore, it is quite necessary to consider the seepage flow effect of the underground water in aquiferous stratum for multi-arch tunnel design. 展开更多
关键词 multi-arch tunnel underground water seepage flow coupling flow and stress surrounding rock deformation vault settlement
下载PDF
Surrounding rock deformation and stress evolution in pre-driven longwall recovery rooms at the end of mining stage 被引量:4
7
作者 Bonan Wang Faning Dang +3 位作者 Wei Chao Yanping Miao Jun Li Fei Chen 《International Journal of Coal Science & Technology》 EI 2019年第4期536-546,共11页
Two case studies were conducted in the Shennan mining area of Shaanxi Province,China to evaluate the surrounding rock deformation and stress evolution in pre-driven longwall recovery rooms· These studies mainly m... Two case studies were conducted in the Shennan mining area of Shaanxi Province,China to evaluate the surrounding rock deformation and stress evolution in pre-driven longwall recovery rooms· These studies mainly monitored the surrounding rock deformation and coal pillar stress in the recovery rooms of the N1206 panel of 2-2 coal seam at Ningtiaota Coal Mine and the 15205 panel of 5-2 coal seam at Hongliulin Coal Mine.The monitoring results showed that the surrounding rock deformation of the main recovery room and the coal pillar stress in the N1206 and 15205 panels began to increase significantly when the face was 36 m and 42 m away from the terminal line,respectively.After the face entered the main recovery room,the maximum roof-to-floor convergence in the N1206 and 15205 panels was 348.03 mm and 771.24 mm,respectively,and the coal pillar stresses increased more than 5 MPa and 7 MPa,respectively.In addition,analysis of the periodic weighting data showed that the main roof break position of the N1206 and 15205 panels after the longwall face entered the main recovery room was-3.8 m and-8.2 m,respectively.This research shows that when the main roof breaks above the coal pillar,the surrounding rock deformation of the main recovery room and the coal pillar stress increase sharply.The last weighting is the key factor affecting the stability of the main recovery room and the coal pillar;main roof breaks at disadvantageous positions are the main cause of the support crushing accidents. 展开更多
关键词 Pre-driven LONGWALL recovery room surrounding rock deformation Stress EVOLUTION Periodic weighting
下载PDF
Deformation mechanism and collapse treatment of the rock surrounding a shallow tunnel based on on-site monitoring 被引量:5
8
作者 QIU Hong-zhi CHEN Xiao-qing +3 位作者 WU Qi-hong WANG Ren-chao ZHAO Wan-yu QIAN Ke-jiang 《Journal of Mountain Science》 SCIE CSCD 2020年第12期2897-2914,共18页
When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the... When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation. 展开更多
关键词 Shallow tunnel surrounding rock deformation Field monitoring Treatment for collapse Information feedback
下载PDF
Deformation mechanism of high-stress and broken-expansion surrounding rock and supporting optimization based on the gray correlation theory 被引量:6
9
作者 余伟健 WANG Ping DU Shao-hua 《Journal of Chongqing University》 CAS 2014年第3期99-114,共16页
Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deform... Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deformation and damage of roadway surrounding rock and an analysis of its mechanism were carried out. The gray correlation theory was used in support scheme optimization design. First, causes and mechanism of deformation of the 1 000 m horizontal transport channel were analyzed through field investigation, laboratory test and data processing methods. We arguued that poor engineering geological conditions and deep pressure increases were the main factors, and the deformation mechanism was mainly the ground deformation pressure. Second, the gray correlation theory was used to construct supporting optimization decision method in the deep roadway. This method more comprehensively considers various factors, including construction, costs, and supporting material functions. The combined support with pre-stressed anchor cables, shotcrete layer, bolt and metal net was put forward according to the actual roadway engineering characteristics. Finally, 4 support schemes were put forward for new roadways. The gray relational theory was applied to optimizing the supporting method, undertaking technical and economic comparison to obtain the correlation degree, and accordingly the schemes were evaluated. It was concluded as follows: the best was the flexible retaining scheme using the steel strand anchor; the second best was the one using plate anchors on the top and rigid common screw steel bolt on the two sides; the ttiird was; the rigid common screw steel bolt in full section of roadway; and the worst is the planished steel rigid support. The optimized scheme was applied to the 1000 m level of new excavation roadway. The results show that the roadway surrounding rock can reach a stable state after 5 to 6 months monitoring, with a convergence rate less than 1 mm/d. 展开更多
关键词 deep high stress broken-expansion surrounding rock deformation and failure of roadways gray correlation theory
下载PDF
Numerical simulation on deformation character of surrounding rock masses of Changjiashan tunnel through the gob of coalmine 被引量:5
10
作者 张志沛 《Journal of Coal Science & Engineering(China)》 2006年第2期11-15,共5页
Based on the construction project of the Changjiashan tunnel of the freeway,the variety rule of surrounding rock masses of the tunnel through the gob of coalmine wasstudied by using of finite element methed(FEM).The s... Based on the construction project of the Changjiashan tunnel of the freeway,the variety rule of surrounding rock masses of the tunnel through the gob of coalmine wasstudied by using of finite element methed(FEM).The status of the stress and strain,thevariety of the plastic area were simulated in the whole rock mass before and after thetunnel was excavated.The characters of stress and deformation of surrounding rockmasses were analyzed when the tunnel was built.It concluded from the numerical simula-tion that the influence on the tunneling is great when the tunnel passing through the gob ofcoalmine is excavated,and the relative measures should be taken. 展开更多
关键词 Changjiashan tunnel gob deformation of surrounding rock masses analysis of FEM
下载PDF
Chaotic time series prediction for surrounding rock's deformation of deep mine lanes in soft rock 被引量:2
11
作者 李夕兵 王其胜 +1 位作者 姚金蕊 赵国彦 《Journal of Central South University of Technology》 2008年第2期224-229,共6页
Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation... Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation of deep mine lane in soft rock by nonlinear theory and methods was established.The chaotic attractor dimension(D) and the largest Lyapunov index(Emax) were put forward to determine whether the deformation process of mine lane is chaotic and the degree of chaos.The analysis of examples indicates that when D>2 and Emax>0,the surrounding rock's deformation of deep mine lane in soft rock is the chaotic process and the laws of the deformation can still be well demonstrated by the method of the reconstructive state space.Comparing with the prediction of linear time series and grey prediction,the chaotic time series prediction has higher accuracy and the prediction results can provide theoretical basis for reasonable support of mine lane in soft rock.The time of the second support in Maluping Mine of Guizhou,China,is determined to arrange at about 40 d after the initial support according to the prediction results. 展开更多
关键词 deformation prediction mine lane in soft rock surrounding rock CHAOS time series
下载PDF
Non-contact monitoring and analysis system for tunnel surrounding rock deformation of underground engineering 被引量:1
12
作者 YANG Song-lin, WANG Bin, JI Sheng-yue, LIU Wei-ning, SHI Hong-yun (Beijing Jiaotong University, Beijing 100044, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期96-99,共4页
It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analy... It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering. 展开更多
关键词 TUNNEL construction deformation of surrounding rock TOTAL STATION NON-CONTACT monitoring data processing and analysis
下载PDF
Tunnel Surrounding Rock Deformation Characteristics and Control in Deep Coal Mining 被引量:2
13
作者 Zhiqiang Zhao Housheng Jia +1 位作者 Bo Peng Yangyang Dong 《Geomaterials》 2013年第1期24-27,共4页
In order to study the failure characteristics and control method of deep tunnel surrounding rock, based on the stress test, the structure and stress state of the main transportation tunnel surrounding rock in Mine Zha... In order to study the failure characteristics and control method of deep tunnel surrounding rock, based on the stress test, the structure and stress state of the main transportation tunnel surrounding rock in Mine Zhaogezhuang level 14 was analyzed, and it shows that the surrounding rock is exposed to an interphase hard and soft disadvantageous structure state and complex high stress repeated addition area;Through the theoretical analysis and the statistical data, the relation between the tunnel stress transformation and the surrounding rock deformation was proposed;Through the numerical simulation of the tunnel surrounding rock failure process with the help of RFPA procedure, the results show that the damage of the transportation tunnel level 14 mainly occurs in the bottom and the two coal ribs, and the failure process is spreading from the bottom to the two coal ribs, and the effect of the surrounding rock deformation control is obvious by using the way of 2.5 m anchor with 1.0 m grouting strengthening. 展开更多
关键词 DEEP TUNNEL surrounding rock Control Stress TRANSFORMATION deformation Characteristics
下载PDF
Mechanical analysis on deformation of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face 被引量:1
14
作者 朱川曲 缪协兴 刘泽 《Journal of Coal Science & Engineering(China)》 2008年第1期24-28,共5页
Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established ... Based on the movement regularity of surrounding rock with road-in packing of gob-side entry retaining in fully-mechanized sub-level caving face(RPGERFCF),the me- chanical model of its surrounding rock was established and the calculating formulas of the deformation of the roof,coal wall and filling body were attained.By the mechanical analy- sis to the deformation of the surrounding rock of RPGERFCF,the major factors influencing the deformation of the surrounding rock were found out and the technologic approaches reduced the deformation and enhanced the stability of the surrounding rock were put for- ward.Consequently,the scientific bases were provided for the stability control of the sur- rounding rock of RPGERFCF. 展开更多
关键词 road-in packing of gob-side entry retaining in fully-mechanized sub-level cav-ing face (RPGERFCF) deformation of surrounding rock mechanical model mechanicalanalysis
下载PDF
Surrounding rock deformation regularity of roadway under extremely complicated geological conditions in deep mine and its control
15
作者 刘长友 何卓军 万志军 《Journal of Coal Science & Engineering(China)》 2003年第1期12-16,共5页
By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and ... By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and stress field as well as the surrounding rock deformation regularity of soft rock roadway are analyzed under extremely complicated geological conditions, a technical principle of bolting to control the surrounding rock of roadway is put forward. And also using a dynamic control for surrounding rocks designing method, the supporting parameters and implement plan are rationally determined. The experimental tests have obtained a good controlling result of surrounding rock. 展开更多
关键词 deep mine extremely complicated geological condition surrounding rock deformation dynamic controlling design
下载PDF
THE RELATION BETWEEN THE CHAIN PILLAR WIDTH AND THE SURROUNDING ROCK DEFORMATION OF ROADWAY
16
作者 郭育光 陆士良 《Journal of China University of Mining and Technology》 1992年第1期1-10,共10页
Based on the analysis and research into ground pressure behavior law and surrounding rock deformation of a large number of roadways affected by mining activity,this paper proposed a relation between the surrounding ro... Based on the analysis and research into ground pressure behavior law and surrounding rock deformation of a large number of roadways affected by mining activity,this paper proposed a relation between the surrounding rock deformation during mining ,the surrounding rock deformation rate during stable stage of mining and the chain pillar width. Moreover,it established the relation between the total amount of surrounding rock deformation during service period of roadway and the chain pillar width,which provides a principal basis for choosing the chain pillar width. 展开更多
关键词 ROADWAY surrounding rock deformation chain pillar width
下载PDF
THE THEORY OF SUPPORTING BROKEN ZONE IN SURROUNDING ROCK 被引量:3
17
作者 董方庭 郭志宏 兰冰 《Journal of China University of Mining and Technology》 1991年第1期64-71,共8页
The first topic discussed in this paper is to evaluate the present supporting theories,among which the typical two are collapse arch and elasto-plastic theories. The former is rather limited in practical application,a... The first topic discussed in this paper is to evaluate the present supporting theories,among which the typical two are collapse arch and elasto-plastic theories. The former is rather limited in practical application,and the latter is built up on some assumptions which is inconsis-tent with the reality,for it is of no need to support a roadway of which the surrounding rock is in elasto-plastic state. The second topic is to prove the objective existence of the broken zone in surrounding rock(BZSR) by a series of laboratory experiments and field measurements. The paper indicates that the object to be supported mainly is the bulking or expanding force resulted from the development of BZSR. This is remarkably different from the existing points of view which have been generally recognized nowadays. So far ,this theory has been tested in supporting more than ten thousand meters roadways located in various strata and has proved itself to have a great technoeconomical benefit. 展开更多
关键词 roadway support rock mass strengthening roadway deformation broken zone surrounding rock
下载PDF
大型地下厂房围岩稳定性及支护措施研究
18
作者 任家辰 张辉 +3 位作者 任旭华 张继勋 朱代富 陆嘉伟 《水力发电》 CAS 2025年第1期74-80,共7页
为研究大跨度、高边墙地下厂房开挖过程中出现的围岩稳定性问题及不同支护措施效果,以西南地区某大型水电站工程为例,采用三维非线性有限元法分析地下厂房围岩稳定性,并建立三维地质模型,对比分析不同支护工况下地下厂房围岩变形、应力... 为研究大跨度、高边墙地下厂房开挖过程中出现的围岩稳定性问题及不同支护措施效果,以西南地区某大型水电站工程为例,采用三维非线性有限元法分析地下厂房围岩稳定性,并建立三维地质模型,对比分析不同支护工况下地下厂房围岩变形、应力变化及塑性区的分布规律。结果表明:洞室顶拱、底板及拐角处易产生应力集中现象,洞室开挖面切割出的岩体存在塑性损伤的风险;相较于无支护措施开挖,采取支护措施后,不同工况下地下厂房围岩变形量、应力集中现象以及塑性区分布均有不同程度的减少;喷混凝土层+锚杆+预应力锚索系统支护的效果最为显著,对围岩变形和损伤的控制作用优于锚杆+预应力锚索支护和喷混凝土层支护。 展开更多
关键词 地下厂房 围岩稳定性 支护措施 变形 应力集中 塑性损伤 有限元法
下载PDF
厚煤层采准巷道布置及围岩稳定性研究
19
作者 赵新增 《凿岩机械气动工具》 2025年第1期59-61,共3页
为了解厚煤层采准巷道布置形式对围岩稳定性的影响,文章通过数值模拟,分析了巷道沿顶掘进、布置在煤层中间和沿底掘进三种不同布置形式下围岩的变形情况,并监测巷道围岩的变形数据。研究发现,巷道沿底掘进时,整体变形较为均匀,顶板、帮... 为了解厚煤层采准巷道布置形式对围岩稳定性的影响,文章通过数值模拟,分析了巷道沿顶掘进、布置在煤层中间和沿底掘进三种不同布置形式下围岩的变形情况,并监测巷道围岩的变形数据。研究发现,巷道沿底掘进时,整体变形较为均匀,顶板、帮部和底板位移梯度均较小,有利于增强围岩的稳定性。 展开更多
关键词 厚煤层 围岩形变 巷道布置
下载PDF
隧道穿越富水断层破碎带围岩变形分析及处治措施
20
作者 李慧 《国防交通工程与技术》 2025年第1期70-74,共5页
隧道穿越富水断层破碎带时易发生涌水突泥、初支变形过大、开裂等工程事故,隧道施工难度大、风险高,严重影响了施工进度。以高黎贡山隧道为工程背景,通过现场监测研究了隧道拱顶变形破坏特征,主要表现为拱顶沉降和非对称变形。围岩破碎... 隧道穿越富水断层破碎带时易发生涌水突泥、初支变形过大、开裂等工程事故,隧道施工难度大、风险高,严重影响了施工进度。以高黎贡山隧道为工程背景,通过现场监测研究了隧道拱顶变形破坏特征,主要表现为拱顶沉降和非对称变形。围岩破碎、强度低及丰富的地下水是隧道通过断层破碎带施工过程中隧道发生大范围破坏、涌水和塌方的主要原因。采用了塌方体处理、注浆加固及施工方法调整等方面一系列综合处理措施,围岩变形得到有效控制,处治措施有效。 展开更多
关键词 隧道工程 富水断层 围岩变形 拱顶沉降 注浆加固 支护参数
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部