期刊文献+
共找到282,402篇文章
< 1 2 250 >
每页显示 20 50 100
Mathematical Analysis on the Uniqueness of Reverse Algorithm for Measuring Elastic-plastic Properties by Sharp Indentation 被引量:7
1
作者 Yongli Huang Xiaofang Liu +2 位作者 Yichun Zhou Zengsheng Ma Chunsheng Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第7期577-584,共8页
The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In... The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In this paper, mathematical analysis on a reverse algorithm from Dao model (Dao et al., Acta Mater., 2001, 49, 3899) was carried out, which thought that only when 20 ≤E*/σ0.033≤ 26 and 0.3n≤ 0.5, the reverse algorithm would yield two solutions of n by dimensionless function Π2. It is shown that, however, there are also two solutions of n when 20≤E*/σ0.033≤ 26 and 0≤n0.1. A unique n can be obtained by dimensionless function Π3 instead of Π2 in these two ranges. E and H can be uniquely determined by a full indentation curve, and σy can be determined if n is unique. Furthermore, sensitivity analysis on obtaining n from dimensionless function Π3 or Π2 has been made. 展开更多
关键词 elastic-plastic properties Sharp indentation Reverse algorithm UNIQUENESS Sensitivity
原文传递
An Inverse Approach for Extracting Elastic-plastic Properties of Thin Films from Small Scale Sharp Indentation 被引量:4
2
作者 Z.S. Ma Y.C. Zhou +1 位作者 S.G. Long C.S. Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第7期626-635,共10页
An inverse method for extracting the elastic-plastic properties of metallic thin films from instrumented sharp indentation has been proposed in terms of dimensional analysis and finite element modeling. A wide range o... An inverse method for extracting the elastic-plastic properties of metallic thin films from instrumented sharp indentation has been proposed in terms of dimensional analysis and finite element modeling. A wide range of materials with different elastic modulus, yield strength, and strain-hardening exponent were examined.Similar to the Nix-Gao model for the depth dependence of hardness H,the relationship between elastic modulus E and indentation depth h can be expressed as By combiningthese two formulas, we find that there is a relationship between yield stress and indentation depth h:where σyO is the yield strength associated with the strain-hardening exponent n, the true hardness Ho and the true elastic modulus Eo.is constant, whichis only related to n, and hH and hE are characteristic lengths for hardness and elastic modulus. The results obtained from inverse analysis show that the elastic-plastic properties of thin films can be uniquely extracted from the solution of this relationship when the indentation size effect has to be taken into account. 展开更多
关键词 INDENTATION elastic-plastic properties Metal thin films Inverse analysis
原文传递
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
3
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg-Gd-Y-Zn-Zr alloy prepared by multi-pass friction stir processing 被引量:1
4
作者 Xiaohu Guan Wen Wang +7 位作者 Ting Zhang Pai Peng Qiang Liu Peng Han Ke Qiao Jun Cai Liqiang Wang Kuaishe Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2041-2056,共16页
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri... A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate. 展开更多
关键词 Friction stir processing MULTI-PASS Mg-Gd-Y-Zn-Zr alloy LPSO phase transformation Mechanical properties
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
5
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
Cumulation of a spherically converging shock wave in metals and its dependence on elastic-plastic properties, phase transitions, spall and shear fractures
6
作者 Evgeny A.Kozlov Alexsander V.Petrovtsev 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第1期26-38,共13页
Consideration is given to results of experimental and theoretical investigations how alpha-epsilon phase transition in the unalloyed iron and the 30 KhGSA steel and its absence in the austenitic 12Kh18N10T stainless s... Consideration is given to results of experimental and theoretical investigations how alpha-epsilon phase transition in the unalloyed iron and the 30 KhGSA steel and its absence in the austenitic 12Kh18N10T stainless steel influence processes under explosive deformation of spheres made of these materials.Polymorphous transition is shown to significantly effect on:amount of explosion-products energy transferred to a sphere,evolution of the converging-wave structure and its parameters,profiles of stress wave and temperature T(R,t)for some Lagrangian particles along the sphere radius,character of energy cumulation under spherical convergence of waves. 展开更多
关键词 Cumulation spherically converging shock wave elastic-plastic properties phase transitions spall and shear fractures
原文传递
Hydration Behavior and Cementitious Properties of Calcium Carbonate-aluminate Minerals Composite
7
作者 王冲 周帅 +2 位作者 ZOU Luyao LIU Jiawen ZHENG Yalin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期126-133,共8页
The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementi... The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementitious material. The composite system of calcium carbonate and aluminate minerals is studied by measuring the component of hydration products, the hydration heat, setting time and compressive strength.The results prove that the composite system has certain cementitious properties and is feasible to prepare new low-carbon cement. 展开更多
关键词 LIMESTONE hydrated calcium carboaluminate cementitious properties mechanical properties
下载PDF
Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
8
作者 何诗悦 刘若水 +3 位作者 刘煦婕 叶先平 王利晨 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期480-486,共7页
Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties o... Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties of W-type barium ferrites,single-phase BaMe_(2)Fe_(16)O_(27)(Me=Fe,Mn,Zn,Ni,Co) with different Me ions were synthesized by the high-temperature solid-state method.The saturation magnetization(Ms) range from 47.77 emu/g to 95.34 emu/g and the magnetic anisotropy field(H_a) range from 10700.60 Oe(1 Oe=79.5775 A·m^(-1)) to 13739.57 Oe,depending on the type of cation substitution in the hexagonal lattice.The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region,while they almost remain constant in the high-frequency region.The charac teristics of easy regulation and preparation make it a potential candidate for use in microwave device applications. 展开更多
关键词 W-type hexaferrite Raman spectra magnetic properties dielectric properties
下载PDF
A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing
9
作者 Huajing Zong Nan Kang +1 位作者 Zehao Qin Mohamed El Mansori 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1048-1071,共24页
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak... The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced. 展开更多
关键词 additive manufacturing laser powder bed fusion tool steel multi-scaled structure mechanical properties thermal properties
下载PDF
Impact of scandium and terbium on the mechanical properties,corrosion behavior,and biocompatibility of biodegradable Mg-Zn-Zr-Mn alloys
10
作者 Khurram Munir Jixing Lin +3 位作者 Xian Tong Arne Biesiekierski Yuncang Li Cuie Wen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期546-572,共27页
Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)h... Magnesium(Mg)-based bone implants degrade rapidly in the physiological environment of the human body which affects their structural integrity and biocompatibility before adequate bone repair.Rare earth elements(REEs)have demonstrated their effectiveness in tailoring the corrosion and mechanical behavior of Mg alloys.This study methodically investigated the impacts of scandium(Sc)and terbium(Tb)in tailoring the corrosion resistance,mechanical properties,and biocompatibility of Mg–0.5Zn–0.35Zr–0.15Mn(MZZM)alloys fabricated via casting and hot extrusion.Results indicate that addition of Sc and Tb improved the strength of MZZM alloys via grain size reduction and solid solution strengthening mechanisms.The extruded MZZM–(1–2)Sc–(1–2)Tb(wt.%)alloys exhibit compressive strengths within the range of 336–405 MPa,surpassing the minimum required strength of 200 MPa for bone implants by a significant margin.Potentiodynamic polarization tests revealed low corrosion rates of as–cast MZZM(0.25 mm/y),MZZM–2Tb(0.45 mm/y),MZZM–1Sc–1Tb(0.18 mm/y),and MZZM–1Sc–2Tb(0.64 mm/y),and extruded MZZM(0.17 mm/y),MZZM–1Sc(0.15 mm/y),MZZM-2Sc(0.45 mm/y),MZZM-1Tb(0.17 mm/y),MZZM-2Tb(0.10 mm/y),MZZM–1Sc-1Tb(0.14 mm/y),MZZM-1Sc-2Tb(0.40 mm/y),and MZZM–2Sc–2Tb(0.51 mm/y)alloys,which were found lower compared to corrosion rate of high-purity Mg(~1.0 mm/y)reported in the literature.Furthermore,addition of Sc,or Tb,or Sc and Tb to MZZM alloys did not adversely affect the viability of SaOS2 cells,but enhanced their initial cell attachment,proliferation,and spreading shown via polygonal shapes and filipodia.This study emphasizes the benefits of incorporating Sc and Tb elements in MZZM alloys,as they effectively enhance corrosion resistance,mechanical properties,and biocompatibility simultaneously. 展开更多
关键词 Corrosion property In vitro cytotoxicity Magnesium alloys Mechanical property Rare earth elements
下载PDF
Physico-Chemical and Nutritional Properties of a Food Broth Based on Nere (Parkia biglobosa)
11
作者 Lassana Bamba Gervais Melaine M’Boh +5 位作者 N’Gbésso Amos Ekissi Kipré Laurent Séri Gnogbo Alexis Bahi Koffi Pierre Valery Niaba Allico Joseph Djaman Grah Avit Maxwell Beugre 《Food and Nutrition Sciences》 CAS 2024年第5期377-389,共13页
Purpose: Diet and eating habits are major risk factors for the health and the development of disease, such as, for example, metabolic disorder leading to cardiovascular pathology and cancer, decreased immunity exposin... Purpose: Diet and eating habits are major risk factors for the health and the development of disease, such as, for example, metabolic disorder leading to cardiovascular pathology and cancer, decreased immunity exposing to infections. This study of the physico-chemical and nutritional properties of a soumara-based food broth was carried out with the aim of promoting the consumption of organic broth made from nere seeds (soumara). That is to alleviate certain metabolic diseases, which is a matter of food safety, and also to limit the risk for the health about the consumption of some cooking stocks on the market. Methods: Several natural ingredients such as nere seeds (soumara), ginger, black pepper, parsley and garlic were used to create a nere-based stock. All these ingredients were freeze-dried and the powder obtained was used to make the broth, regarding their physical and chemical properties. Results: The broth had a good protein content of 17.41 ± 0.367 g/100g, a lipid content of 16.80 ± 0.08 g/100g and a fiber content of 8.66 ± 0.04 g/100g. In terms of nutritional values, the broth showed good levels of calcium 184.21 ± 0.09 mg/100g, potassium 50.04 ± 1.45 mg/100g and iron and zinc. In terms of antioxidant activity, the broth also showed good antioxidant activity. Conclusion: Regarding the properties of our food broth, whose composition is based on natural ingredients, could be recommended for consumption and, its properties, could play an important role in preventing and combating certain metabolic diseases. 展开更多
关键词 Food Broth Nere Physico-Chemical properties NUTRITION Food Safety
下载PDF
Soil Physico-Chemical Properties and Different Altitudes Affect Arbuscular Mycorrhizal Fungi Abundance and Colonization in Cacao Plantations of Cameroon
12
作者 Franklin Tounkam Ketchiemo Beaulys Fotso +4 位作者 Astride Stéphanie Mouafi Djabou Victor Jos Eyamo Evina Japhet Youri Essambita Franck Maxime Ewane Tang Nicolas Niemenak 《American Journal of Plant Sciences》 CAS 2024年第2期57-82,共26页
This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-... This study aims to investigate the abundance of AMF according to soil properties and altitudes in different cacao plantations of Cameroon. Physico-chemical analyses were made on soil samples collected from three agro-ecological zones. Soil samples were also used to evaluate directly the AMF abundance following the various altitudes and after trapping by sorghum plant. The results showed that soil properties, AMF spore abundances and colonization fluctuated significantly at different altitudes. The most represented texture was sandy loam. The bimodal zone presented a homogeneous texture (sandy loam) in all its localities. Cacao soil chemical characteristics showed that, the highest nitrogen rate (0.47%;p 0.05, Scott-Knott test) was recorded at Melong in a monomodal zone while Tonga in the Western highlands displayed the lowest rate (0.13%). Soil P concentration was significantly high in monomodal zones (Mbanga and Melong). Soil pH level indicated that the soil from Tonga in the Western highlands was neutral (pH = 6.67), and soils of other localities under study were acidic with the lowest (4.75) pH level recorded at Melong in a monomodal zone. In soil samples, the highest spore density (1.03 spores/g soil) was observed at Ntui in Bimodal zone, while the lowest spore density (0.26 spores/g soil) was observed at Bafang in the Western highlands. Root colonization showed that the sample from Bokito in a bimodal zone displayed the best frequency of mycorrhization (86.11%) while the sample from Bafang in the Western highlands recorded the lowest (27.11%). The PCA analysis highlighted that available phosphorus, pH and altitude all strongly correlated with AMF root colonization ability and can be used as a predictor of AMF colonization ability in cacao rhizosphere. 展开更多
关键词 Agroecological Zone Altitude Variations Arbuscular Mycorrhizal Fungi Soil properties Theobroma cacao
下载PDF
Synergistic enhancement on mechanical properties and corrosion resistance of biodegradable Mg-Zn-Y alloy via V-microalloying
13
作者 Jiaxin Zhang Xin Ding +3 位作者 Ruirun Chen Wenchao Cao Jinshan Zhang Rui Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期530-545,共16页
For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with ... For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy. 展开更多
关键词 Corrosion Mechanical property V-microalloying LPSO SKPFM
下载PDF
Thermo-Physical Potential of Recycled Banana Fibers for Improving the Thermal and Mechanical Properties of Biosourced Gypsum-Based Materials
14
作者 Youssef Maaloufa Soumia Mounir +8 位作者 Sara Ibnelhaj Fatima Zohra El Wardi Asma Souidi Yakubu Aminu Dodo Malika Atigui Mina Amazal Abelhamid Khabbazi Hassan Demrati Ahmed Aharoune 《Journal of Renewable Materials》 EI CAS 2024年第4期843-867,共25页
The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little ... The development of bio-sourced materials is essential to ensuring sustainable construction;it is considered a locomotive of the green economy.Furthermore,it is an abundant material in our country,to which very little attention is being given.This work aims to valorize the waste of the trunks of banana trees to be used in construction.Firstly,the physicochemical properties of the fiber,such as the percentage of crystallization and its morphology,have been determined by X-ray diffraction tests and scanning electron microscopy to confirm the potential and the impact of the mode of drying on the quality of the banana fibers,with the purpose to promote the use of this material in construction.Secondly,the results obtained with the gypsum matrix allowed us to note a preponderant improvement in the composite’s thermal properties thanks to the variation of the banana fiber additive.Thirdly,the impact of the nature of the banana fiber distribution(either fiber mixed in matrix or fiber series model)on the flexural and compressive strengths of the composites was studied.The results obtained indicate that the insulation gain reaches up to 40%.It depends on the volume fraction and type of distribution of the banana fibers.However,the thermal inertia of the composites developed,represented by thermal diffusivity and thermal effusivity,was studied.Results indicate a gain of 40%and 25%,respectively,in terms of thermal diffusivity and thermal effusivity of the developed composites compared to plaster alone.Concerning the mechanical properties,the flexural strength depends on the percentage of the volume fraction of banana fibers used,and it can reach 20%more than the flexural strength of plaster;nevertheless,there is a significant loss in terms of the compressive strength of the studied composites.The results obtained are confirmed by the microstructure of the fiber banana.In fact,the morphology of the banana fibers was improved by the drying process.It reduces the amorphous area and improves the cellulosic crystalline surfaces,which assures good adhesion between the fiber and the matrix plaster.Finally,the dimensionless coefficient analysis was done to judge the optimal proportion of the banana fiber additive and to recommend its use even on false ceilings or walls. 展开更多
关键词 Biosourced materials fiber banana flexural strength mechanical properties open-air drying PLASTER thermal properties waste management
下载PDF
A novel high-Cr CoNi-based superalloy with superior high-temperature microstructural stability, oxidation resistance and mechanical properties
15
作者 Xiaorui Zhang Min Zou +3 位作者 Song Lu Longfei Li Xiaoli Zhuang Qiang Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1373-1381,共9页
A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical proper... A novel multicomponent high-Cr CoNi-based superalloy with superior comprehensive performance was prepared,and the evaluation of its high-temperature microstructural stability,oxidation resistance,and mechanical properties was conducted mainly using its cast polycrystalline alloy.The results disclosed that the morphology of theγ′phase remained stable,and the coarsening rate was slow during the long-term aging at 900–1000℃.The activation energy forγ′precipitate coarsening of alloy 9CoNi-Cr was(402±51)kJ/mol,which is higher compared with those of CMSX-4 and some other Ni-based and Co-based superalloys.Importantly,there was no indica-tion of the formation of topologically close-packed phases during this process.All these factors demonstrated the superior microstructural stability of the alloy.The mass gain of alloy 9CoNi-Cr was 0.6 mg/cm^(2) after oxidation at 1000℃ for 100 h,and the oxidation resistance was comparable to advanced Ni-based superalloys CMSX-4,which can be attributed to the formation of a continuous Al_(2)O_(3) protective layer.Moreover,the compressive yield strength of this cast polycrystalline alloy at high temperatures is clearly higher than that of the conventional Ni-based cast superalloy and the compressive minimum creep rate at 950℃ is comparable to that of the conventional Ni-based cast superalloy,demonstrating the alloy’s good mechanical properties at high temperature.This is partially because high Cr is bene-ficial in improving theγandγ′phase strengths of alloy 9CoNi-Cr. 展开更多
关键词 CoNi-based superalloys microstructure COARSENING OXIDATION mechanical properties
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications
16
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Effect of In doping on the evolution of microstructure,magnetic properties and corrosion resistance of NdFeB magnets
17
作者 李豫豪 范晓东 +8 位作者 贾智 范璐 丁广飞 刘新才 郭帅 郑波 曹帅 陈仁杰 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期623-629,共7页
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga... The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets. 展开更多
关键词 In-doping NdFeB magnets magnetic properties corrosion resistance
下载PDF
Magnetic and electrical transport properties in GdAlSi and SmAlGe
18
作者 巩静 王欢 +5 位作者 马小平 曾祥雨 林浚发 韩坤 王乙婷 夏天龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期554-560,共7页
We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals,which possess a LaPtSi-type structure(space group I4_(1)md).The magnetic susceptibility data unambigu... We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals,which possess a LaPtSi-type structure(space group I4_(1)md).The magnetic susceptibility data unambiguously reveal magnetic ordering below a characteristic transition temperature(T_(N)).For GdAlSi,a hysteresis loop is observed in the magnetization and magnetoresistance curves within the ab plane when the magnetic field is applied below T_(N),which is around32 K.Notable specific heat anomalies are detected at 32 K for GdAlSi and 6 K for SmAlGe,confirming the occurrence of magnetic transitions.In addition,the extracted magnetic entropy at high temperatures is consistent with the theoretical value of Rln(2J+1) for J=7/2 in Gd^(3+) and J=5/2 in Sm^(3+),respectively.SmAlGe also exhibits Schottky-like specific heat contributions.Additionally,both GdAlSi and SmAlGe exhibit positive magnetoresistance and a normal Hall effect. 展开更多
关键词 crystal growth MAGNETISM magnetotransport properties specific heat
下载PDF
Effects of BN on the Mechanical and Thermal Properties of PP/BN Composites
19
作者 陈厚振 王艳芝 +4 位作者 NAN Yu WANG Xu YUE Xianyang ZHANG Yifei FAN Huiling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期345-352,共8页
In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moul... In order to explore the thermal conductivity of polypropylene(PP)/hexagonal boron nitride(BN) composites,PP composites filled with different proportions of BN were prepared through extrution compounding,injection moulding and compression moulding.The composites were filled with BN particles of 5 and 20 μm respectively,and their mass fractions in composites were considered.Percentage of BN was varied from 0 to 25wt% in steps of 5wt%.The effects of BN filler on mechanical properties of the composites were evaluated.The thermal behaviors were studied using DSC and TGA,and the thermal conductivity was also investigated by Laser Flash Device and the Model of 3D Heat Conduction respectively.The experimental results show that impact strength of PP/BN can be enhanced with the addition of BN,but that composites exhibit lower breaking elongation & tensile strength when compared to unfilled ones.It is found that mass fraction of BN influenced the final thermal stability and degree of crystallization of PP matrix,the degree of crystallization of PP with 15wt% of 20 μm BN can be improved by 25% than neat PP.Meanwhile,crystallization temperatures of PP composites are elevated by about 10 ℃.The thermal conductivity results demonstrate that the maximum value of the thermal conductivity is achieved from PP/BN with 20wt% of 20 μm BN,higher than that of pure PP by 95.65%,close to the simulation one. 展开更多
关键词 thermal properties POLYPROPYLENE COMPOSITES hexagonal boron nitride
下载PDF
Microstructures and Properties of Biomedical Mg-Zn-Sn-Zr Rolled Alloys
20
作者 周生刚 ZHANG Daxin +5 位作者 XU Yang DUAN Jihao LI Tao LIU Junfeng WANG Peng 曹勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期766-773,共8页
The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were inve... The as-cast Mg-2.0Zn-1.5Sn-xZr(x=0,0.4,0.6,0.8,1.0 wt%)alloy was rolled with the pressure less than 5%each time.The microstructure,mechanical properties,corrosion properties and biocompatibility of the alloy were investigated.The microstructure of the alloy was observed and analyzed by scanning electron microscope,and the tensile test was carried out by universal tensile machine.The corrosion resistance of the alloy in Hank's solution was studied by hydrogen evolution experiment and electrochemical test,and the biocompatibility of the alloy was tested by L929 cells.The results show that Mg-2Zn-1.5Sn-xZr alloy has excellent mechanical properties.The elongation of Mg-2Zn-1.5Sn-xZr alloy decreases with the increase of Zr content,but the tensile strength first increases and then decreases with the increase of Zr concentration.When the Zr content is 0.8 wt%,the maximum tensile strength of the alloy is 235 MPa.The results of hydrogen evolution experiment and electrochemical analysis show that the corrosion resistance of the alloy is the best when the Zr content is 0.8 wt%,and all the five alloys have high biocompatibility.In conclusion,the rolled alloy has good properties and has broad application prospects in the field of biomaterials. 展开更多
关键词 magnesium alloy corrosion performance mechanical properties BIOCOMPATIBILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部