In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An O(h2) order superclose property for the stress and displacement and a global superconvergence result...In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An O(h2) order superclose property for the stress and displacement and a global superconvergence result of the displacement are established by employing a Clement interpolation, an integral identity and appropriate postprocessing techniques.展开更多
An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approxi...An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.展开更多
文摘In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner variational principle. An O(h2) order superclose property for the stress and displacement and a global superconvergence result of the displacement are established by employing a Clement interpolation, an integral identity and appropriate postprocessing techniques.
基金supported by the National Natural Science Foundation of China No.10671184
文摘An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.