The transient vistosity response of a lubricant following the pressure charge in a EHDcontact is consideied in the line-contact isothermal elastohydrodynamic lubrication analyses. Soobtained pressure distribution and ...The transient vistosity response of a lubricant following the pressure charge in a EHDcontact is consideied in the line-contact isothermal elastohydrodynamic lubrication analyses. Soobtained pressure distribution and the oil film thickness are different from those obtained with equi-librium viscosity.展开更多
This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized...This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.展开更多
In order to consider the effects of elastohydrodynamic lubrication(EHL) on contact fatigue reliability of spur gear, an accurate and efficient method that combines with response surface method(RSM) and first order sec...In order to consider the effects of elastohydrodynamic lubrication(EHL) on contact fatigue reliability of spur gear, an accurate and efficient method that combines with response surface method(RSM) and first order second moment method(FOSM) was developed for estimating the contact fatigue reliability of spur gear under EHL. The mechanical model of contact stress analysis of spur gear under EHL was established, in which the oil film pressure was mapped into hertz contact zone. Considering the randomness of EHL, material properties and fatigue strength correction factors, the proposed method was used to analyze the contact fatigue reliability of spur gear under EHL. Compared with the results of 1.5×105 by traditional Monte-Carlo, the difference between the two failure probability results calculated by the above mentioned methods is 2.2×10-4, the relative error of the failure probability results is 26.8%, and time-consuming only accounts for 0.14% of the traditional Monte-Carlo method(MCM). Sensitivity analysis results are in very good agreement with practical cognition. Analysis results show that the proposed method is precise and efficient, and could correctly reflect the influence of EHL on contact fatigue reliability of spur gear.展开更多
A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication (EHL) problems is presented. First, by introducing a special matrix splitting iteration method into the tr...A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication (EHL) problems is presented. First, by introducing a special matrix splitting iteration method into the traditional compound direct iterative method, the full matrices for the linear systems of equations are transformed into sparse banded ones with any half-bandwidth; then, an extended Thomas method which can solve banded linear systems with any half-bandwidth is derived to accelerate the computing speed. Through the above two steps, the computational complexity of each iteration is reduced approximately from O(N^3/3) to O(β^2N), where N is the total number of nodes, and β is the half-bandwidth. Two kinds of numerical results of transient EHL line contact problems under sinusoidal excitation or pure normal approach process are obtained. The results demonstrate that the new algorithm increases computing speed several times more than the traditional compound direct iterative method with the same numerical precision. Also the results show that the new algorithm can get the best computing speed and robustness when the ratio, half-bandwidth to total number of nodes, is about 7.5% 10.0% in moderate load cases.展开更多
文摘The transient vistosity response of a lubricant following the pressure charge in a EHDcontact is consideied in the line-contact isothermal elastohydrodynamic lubrication analyses. Soobtained pressure distribution and the oil film thickness are different from those obtained with equi-librium viscosity.
基金financial support from the Indian National Science Academy,New Delhi,IndiaBiluru Gurubasava Mahaswamiji Institute of Technology for the encouragement and support。
文摘This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication(EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newtongeneralized minimal residual(GMRES) from the Krylov subspace method(KSM). The acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner.The profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings.The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.
基金Project(CX2014B060)supported by Hunan Provincial Innovation for Postgraduate,ChinaProject(8130208)supported by General Armament Pre-research Foundation,China
文摘In order to consider the effects of elastohydrodynamic lubrication(EHL) on contact fatigue reliability of spur gear, an accurate and efficient method that combines with response surface method(RSM) and first order second moment method(FOSM) was developed for estimating the contact fatigue reliability of spur gear under EHL. The mechanical model of contact stress analysis of spur gear under EHL was established, in which the oil film pressure was mapped into hertz contact zone. Considering the randomness of EHL, material properties and fatigue strength correction factors, the proposed method was used to analyze the contact fatigue reliability of spur gear under EHL. Compared with the results of 1.5×105 by traditional Monte-Carlo, the difference between the two failure probability results calculated by the above mentioned methods is 2.2×10-4, the relative error of the failure probability results is 26.8%, and time-consuming only accounts for 0.14% of the traditional Monte-Carlo method(MCM). Sensitivity analysis results are in very good agreement with practical cognition. Analysis results show that the proposed method is precise and efficient, and could correctly reflect the influence of EHL on contact fatigue reliability of spur gear.
文摘A fast compound direct iterative algorithm for solving transient line contact elastohydrodynamic lubrication (EHL) problems is presented. First, by introducing a special matrix splitting iteration method into the traditional compound direct iterative method, the full matrices for the linear systems of equations are transformed into sparse banded ones with any half-bandwidth; then, an extended Thomas method which can solve banded linear systems with any half-bandwidth is derived to accelerate the computing speed. Through the above two steps, the computational complexity of each iteration is reduced approximately from O(N^3/3) to O(β^2N), where N is the total number of nodes, and β is the half-bandwidth. Two kinds of numerical results of transient EHL line contact problems under sinusoidal excitation or pure normal approach process are obtained. The results demonstrate that the new algorithm increases computing speed several times more than the traditional compound direct iterative method with the same numerical precision. Also the results show that the new algorithm can get the best computing speed and robustness when the ratio, half-bandwidth to total number of nodes, is about 7.5% 10.0% in moderate load cases.