期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Application and comparison of different elastoplastic constitutive models for springback simulation of aluminum sheet forming 被引量:1
1
作者 HU Xiao DIAO Keshan LI Yanbo 《Baosteel Technical Research》 CAS 2016年第3期42-48,共7页
Springback is considered to be one of the most important problems in aluminum sheet stamp forming, leading to deviation from the designed target shape and assembly defects. In this study, a springback simulation model... Springback is considered to be one of the most important problems in aluminum sheet stamp forming, leading to deviation from the designed target shape and assembly defects. In this study, a springback simulation model based on the benchmark of a Jaguar Land Rover aluminum panel is established. We embed several elastoplastic constitutive models ( Barlat' s 89, Barlat' s YLD2000, Yoshida-Uemori (YU) + Barlat' s 89, and YU + Barlat' s YLD2000) in the finite element model,in order to discuss the influence of the constitutive model selection on springback prediction in aluminum sheet forming. 展开更多
关键词 SPRINGBACK aluminum sheet torming elastoplastic constitutive model
下载PDF
Calibration of an elastoplastic model of sand liquefaction using the swarm intelligence with a multi-objective function
2
作者 Qiutong Li Zhehao Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期789-802,共14页
According to post-seismic observations,spectacular examples of engineering failures can be ascribed to the occurrence of sand liquefaction,where a sandy soil stratum could undergo a transient loss of shear strength an... According to post-seismic observations,spectacular examples of engineering failures can be ascribed to the occurrence of sand liquefaction,where a sandy soil stratum could undergo a transient loss of shear strength and even behave as a“liquid”.Therefore,correct simulation of liquefaction response has become a challenging issue in geotechnical engineering field.In advanced elastoplastic models of sand liquefaction,certain fitting parameters have a remarkable effect on the computed results.However,the identification of these parameters,based on the experimental data,is usually intractable and sometimes follows a subjective trial-and-error procedure.For this,this paper presented a novel calibration methodology based on an optimization algorithm(particle swarm optimization(PSO))for an advanced elastoplastic constitutive model.A multi-objective function was designed to adjust the global quality for both monotonic and cyclic triaxial simulations.To overcome computational problem probably appearing in simulation of the cyclic triaxial test,two interrupt mechanisms were designed to prevent the particles from wasting time in searching the unreasonable space of candidate solutions.The Dafalias model has been used as an example to demonstrate the main programme.With the calibrated parameters for the HN31 sand,the computed results were highly consistent with the laboratory experiments(including monotonic triaxial tests under different confining pressures and cyclic triaxial tests in two loading modes).Finally,an extension example is given for Ottawa sand F65,suggesting that the proposed platform is versatile and can be easily customized to meet different practical needs. 展开更多
关键词 Particle swarm optimization(PSO) Sand liquefaction elastoplastic constitutive model Triaxial test
下载PDF
Unified elastoplastic finite difference and its application 被引量:1
3
作者 马宗源 廖红建 党发宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第4期457-474,共18页
Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which i... Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non- associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening be- havior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD mate- rial structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper. 展开更多
关键词 elastoplastic constitutive model unified strength theory explicit finite difference effect of intermediate principal stress
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部