Huayi Elec. Apparatus Group Co, Ltd. (HEAG), China, is a manufacturer of H.V. & L.V. switchgear equipments appointed by state, a certified enterprise of ISO9001 Quality Assurance System, the Golden Customer of the...Huayi Elec. Apparatus Group Co, Ltd. (HEAG), China, is a manufacturer of H.V. & L.V. switchgear equipments appointed by state, a certified enterprise of ISO9001 Quality Assurance System, the Golden Customer of the Agriculture Bank of China in Zhejiang province, National Advanced Unit of Science and Technology, High and New Technology Enterprise in Zhejiang province, etc., which mainly produces the complete set of equipment, Distribution展开更多
Huayi Elec. Apparatus Group Co, Ltd. (HEAG), China, is a manufacturer of H.V. & L.V. switchgear equipmentsappointed by state, a certified enterprise of ISO9001 Quality Assurance System, the Golden Customer of the ...Huayi Elec. Apparatus Group Co, Ltd. (HEAG), China, is a manufacturer of H.V. & L.V. switchgear equipmentsappointed by state, a certified enterprise of ISO9001 Quality Assurance System, the Golden Customer of the AgricultureBank of China in Zhejiang province, National Advanced Unit of Science and Technology, High and New TechnologyEnterprise in Zhejiang province, etc., which mainly produces the complete set of equipment, Distribution AutomaticSwitches under 35kV and their terminal devices, H.V. components for switchgear, electronic watt-hour meter etc.All the leading products have been selected in 【Catalogue of the Recommended Enterprises for Two Networks’展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
Glycosylation is a process that involves the addition of sugar moieties or glycans to different types of molecules,including proteins,lipids,and nucleic acids.Among these,protein glycosylation is one of the most preva...Glycosylation is a process that involves the addition of sugar moieties or glycans to different types of molecules,including proteins,lipids,and nucleic acids.Among these,protein glycosylation is one of the most prevalent forms of post-translational modification,playing a crucial role in biological complexity.With more than ten monosaccharides identified within mammalian brain cells and more than 1×1012 possible combinations,the heterogeneity of glycosylation is extensive(Conroy et al.,2021).The diversity of glycans and the complexity of their structures allow for a wide range of protein functions.N-glycans are one of the most abundant forms of glycans and are involved in various cellular functions.N-glycans can be added to proteins at specific sequons,Asn-X-Ser/Thr,and are classified into three main types in mature glycoproteins:high mannose,complex,and hybrid.High mannose N-glycans consist of 5-9 mannose residues linked to a chitobiose core and undergo processing into complex or hybrid forms in the Golgi apparatus(Varki et al.,2017).Complex N-glycans are more diverse and contain various branched structures such as antennae with fucose,galactose,and sialic acid residues.Hybrid N-glycans contain one or more complex branches in conjunction with an oligomannose branch(Fisher and Ungar,2016).Understanding the specific functions of these different types of N-glycans in protein regulation,folding,and function is an active area of research in the life sciences,including glycobiology.展开更多
In traditional high-pressure–temperature assembly design, priority has been given to temperature insulation and retention at high pressures.This limits the efficiency of cooling of samples at the end of experiments, ...In traditional high-pressure–temperature assembly design, priority has been given to temperature insulation and retention at high pressures.This limits the efficiency of cooling of samples at the end of experiments, with a negative impact on many studies in high-pressure Earth andplanetary science. Inefficient cooling of experiments containing molten phases at high temperature leads to the formation of quench textures,which makes it impossible to quantify key compositional parameters of the original molten phase, such as their volatile contents. Here,we present a new low-cost experimental assembly for rapid cooling in a six-anvil cubic press. This assembly not only retains high heatingefficiency and thermal insulation, but also enables a very high cooling rate (∼600 ℃/s from 1900 ℃ to the glass transition temperature).Without using expensive materials or external modification of the press, the cooling rate in an assembly (∼600 ℃/s) with cube lengths of38.5 mm is about ten times faster than that in the traditional assembly (∼60 ℃/s). Experiments yielding inhomogeneous quenched melttextures when the traditional assembly is used are shown to yield homogeneous silicate glass without quench textures when the rapid coolingassembly is used.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications...Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.展开更多
This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional sh...This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional shear apparatus was utilized to conduct tests on remolded samples under both normal and frozen conditions to investigate the mechanical properties and deformation behavior of loess under complex stress conditions. The results indicate significant differences in the internal changes of soil particles, unfrozen water, and relative positions in soil samples under normal and frozen conditions, leading to noticeable variations in strength and strain development.In frozen state, loess experiences primarily compressive failure with a slow growth of cracks, while at normal temperature, it predominantly exhibits shear failure. With the increase in the principal stress angle, the deformation patterns of the soil samples under different conditions become essentially consistent, gradually transitioning from compression to extension, accompanied by a reduction in axial strength. The gradual increase in the principal stress axis angle(α) reduces the strength of the generalized shear stress and shear strain curves.Under an increasing α, frozen soil exhibits strain-hardening characteristics, with the maximum shear strength occurring at α = 45°. The intermediate principal stress coefficient(b) also significantly impacts the strength of frozen soil, with an increasing b resulting in a gradual decrease in generalized shear stress strength. This study provides a reference for comprehensively exploring the mechanical properties of soil under traffic load and a reliable theoretical basis for the design and maintenance of roadbeds.展开更多
During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in...During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs.展开更多
文摘Huayi Elec. Apparatus Group Co, Ltd. (HEAG), China, is a manufacturer of H.V. & L.V. switchgear equipments appointed by state, a certified enterprise of ISO9001 Quality Assurance System, the Golden Customer of the Agriculture Bank of China in Zhejiang province, National Advanced Unit of Science and Technology, High and New Technology Enterprise in Zhejiang province, etc., which mainly produces the complete set of equipment, Distribution
文摘Huayi Elec. Apparatus Group Co, Ltd. (HEAG), China, is a manufacturer of H.V. & L.V. switchgear equipmentsappointed by state, a certified enterprise of ISO9001 Quality Assurance System, the Golden Customer of the AgricultureBank of China in Zhejiang province, National Advanced Unit of Science and Technology, High and New TechnologyEnterprise in Zhejiang province, etc., which mainly produces the complete set of equipment, Distribution AutomaticSwitches under 35kV and their terminal devices, H.V. components for switchgear, electronic watt-hour meter etc.All the leading products have been selected in 【Catalogue of the Recommended Enterprises for Two Networks’
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金supported by the Institute for Basic Science(IBS-R001-D2-2022-A03).
文摘Glycosylation is a process that involves the addition of sugar moieties or glycans to different types of molecules,including proteins,lipids,and nucleic acids.Among these,protein glycosylation is one of the most prevalent forms of post-translational modification,playing a crucial role in biological complexity.With more than ten monosaccharides identified within mammalian brain cells and more than 1×1012 possible combinations,the heterogeneity of glycosylation is extensive(Conroy et al.,2021).The diversity of glycans and the complexity of their structures allow for a wide range of protein functions.N-glycans are one of the most abundant forms of glycans and are involved in various cellular functions.N-glycans can be added to proteins at specific sequons,Asn-X-Ser/Thr,and are classified into three main types in mature glycoproteins:high mannose,complex,and hybrid.High mannose N-glycans consist of 5-9 mannose residues linked to a chitobiose core and undergo processing into complex or hybrid forms in the Golgi apparatus(Varki et al.,2017).Complex N-glycans are more diverse and contain various branched structures such as antennae with fucose,galactose,and sialic acid residues.Hybrid N-glycans contain one or more complex branches in conjunction with an oligomannose branch(Fisher and Ungar,2016).Understanding the specific functions of these different types of N-glycans in protein regulation,folding,and function is an active area of research in the life sciences,including glycobiology.
基金supported by National Natural Science Foundation of China Grant No.42250105 to Y.L.The Center for High Pressure Science and Technology Advanced Research is supported by the National Science Foundation of China(Grant Nos.U1530402 and U1930401).
文摘In traditional high-pressure–temperature assembly design, priority has been given to temperature insulation and retention at high pressures.This limits the efficiency of cooling of samples at the end of experiments, with a negative impact on many studies in high-pressure Earth andplanetary science. Inefficient cooling of experiments containing molten phases at high temperature leads to the formation of quench textures,which makes it impossible to quantify key compositional parameters of the original molten phase, such as their volatile contents. Here,we present a new low-cost experimental assembly for rapid cooling in a six-anvil cubic press. This assembly not only retains high heatingefficiency and thermal insulation, but also enables a very high cooling rate (∼600 ℃/s from 1900 ℃ to the glass transition temperature).Without using expensive materials or external modification of the press, the cooling rate in an assembly (∼600 ℃/s) with cube lengths of38.5 mm is about ten times faster than that in the traditional assembly (∼60 ℃/s). Experiments yielding inhomogeneous quenched melttextures when the traditional assembly is used are shown to yield homogeneous silicate glass without quench textures when the rapid coolingassembly is used.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金This work was financially supported by the National Natural Science Foundation of China(52101064)Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z158)Industry-University-Research Cooperation Projects(RH2000002728,RH2000002332,RH2100000263).
文摘Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.
基金This work was supported by the National Natural Science Foundation of China(Nos.42161026&41801046)the Natural Science Foundation of Qinghai Province(No.2023-ZJ-934M)the Youth Research Foundation of Qinghai University(No.2022-QGY-5).
文摘This paper aims to comprehensively analyze the influence of the principal stress angle rotation and intermediate principal stress on loess's strength and deformation characteristics. A hollow cylinder torsional shear apparatus was utilized to conduct tests on remolded samples under both normal and frozen conditions to investigate the mechanical properties and deformation behavior of loess under complex stress conditions. The results indicate significant differences in the internal changes of soil particles, unfrozen water, and relative positions in soil samples under normal and frozen conditions, leading to noticeable variations in strength and strain development.In frozen state, loess experiences primarily compressive failure with a slow growth of cracks, while at normal temperature, it predominantly exhibits shear failure. With the increase in the principal stress angle, the deformation patterns of the soil samples under different conditions become essentially consistent, gradually transitioning from compression to extension, accompanied by a reduction in axial strength. The gradual increase in the principal stress axis angle(α) reduces the strength of the generalized shear stress and shear strain curves.Under an increasing α, frozen soil exhibits strain-hardening characteristics, with the maximum shear strength occurring at α = 45°. The intermediate principal stress coefficient(b) also significantly impacts the strength of frozen soil, with an increasing b resulting in a gradual decrease in generalized shear stress strength. This study provides a reference for comprehensively exploring the mechanical properties of soil under traffic load and a reliable theoretical basis for the design and maintenance of roadbeds.
文摘During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs.