A new electric arc furnace (EAF) steelmaking process with increasing hot metal charging ratio and improving slagging regime simultaneously was developed and applied in a 50 t electric arc furnace for more than a yea...A new electric arc furnace (EAF) steelmaking process with increasing hot metal charging ratio and improving slagging regime simultaneously was developed and applied in a 50 t electric arc furnace for more than a year at No. 1 Steelmaking Plant of Shanxi Taigang Stainless Corporation Limited. The essential fact of the new EAF steelmaking process was to charge hot metal in two portions or steps: firstly, 35wt%-40wt% hot metal was pretreated by blowing oxygen in a specially designed reactor for decar burization and improving hot metal temperature and melting premelted slag; secondly, 30wt% hot metal was charged into EAF with high basicity refining slags from ladle furnace (LF)-vacuum degassing furnace (VD) refining process. The results show that the hot metal charging ratio can reach to about 65wt%-70wt% for the new EAF steelrnaking process; meanwhile, the tap-to-tap time of a 50 t EAF can shorten by 5-10 min, the electricity consumption can decrease by 35-50 kW·h/t, the lime consumption can reduce by 10.5 kg/t of molten steel, and the content of harmful heavy metals in molten steel can be easily controlled to less than the upper limits of aimed steel specification or grade compared with the traditional EAF steelmaking process. In addition, the dephosphorization ability shows a slight strengthening, however, a small degree of lessening for desulphurization ability is observed for the new EAF steelmaking process, but the weakness of desulphurization ability cannot become an obstacle to its further application since a stronger desulphurization ability can be achieved during secondary refining of LF coupled with VD after EAF steelmaking process.展开更多
以脱碳反应动力学规律及质量平衡为基础导出了电炉兑铁水条件下熔池脱碳速度与相应工艺参数之间关系的数学模型.与某钢厂100 t UHP电弧炉实际冶炼结果对比表明,该模型可以比较准确地预测熔池含碳量的变化和控制冶炼终点碳含量.研究表明...以脱碳反应动力学规律及质量平衡为基础导出了电炉兑铁水条件下熔池脱碳速度与相应工艺参数之间关系的数学模型.与某钢厂100 t UHP电弧炉实际冶炼结果对比表明,该模型可以比较准确地预测熔池含碳量的变化和控制冶炼终点碳含量.研究表明,在高碳范围内脱碳速度与供氧流量成正比;在中碳范围内,其脱碳速度与熔池碳含量的平方根成正比;在低碳范围内脱碳速度与熔池碳含量成正比.用最小经济吹氧量曲线,即根据钢水碳含量降低相应递减吹氧量的吹氧方式,可以获得最佳的冶炼效果.展开更多
文摘A new electric arc furnace (EAF) steelmaking process with increasing hot metal charging ratio and improving slagging regime simultaneously was developed and applied in a 50 t electric arc furnace for more than a year at No. 1 Steelmaking Plant of Shanxi Taigang Stainless Corporation Limited. The essential fact of the new EAF steelmaking process was to charge hot metal in two portions or steps: firstly, 35wt%-40wt% hot metal was pretreated by blowing oxygen in a specially designed reactor for decar burization and improving hot metal temperature and melting premelted slag; secondly, 30wt% hot metal was charged into EAF with high basicity refining slags from ladle furnace (LF)-vacuum degassing furnace (VD) refining process. The results show that the hot metal charging ratio can reach to about 65wt%-70wt% for the new EAF steelrnaking process; meanwhile, the tap-to-tap time of a 50 t EAF can shorten by 5-10 min, the electricity consumption can decrease by 35-50 kW·h/t, the lime consumption can reduce by 10.5 kg/t of molten steel, and the content of harmful heavy metals in molten steel can be easily controlled to less than the upper limits of aimed steel specification or grade compared with the traditional EAF steelmaking process. In addition, the dephosphorization ability shows a slight strengthening, however, a small degree of lessening for desulphurization ability is observed for the new EAF steelmaking process, but the weakness of desulphurization ability cannot become an obstacle to its further application since a stronger desulphurization ability can be achieved during secondary refining of LF coupled with VD after EAF steelmaking process.
文摘以脱碳反应动力学规律及质量平衡为基础导出了电炉兑铁水条件下熔池脱碳速度与相应工艺参数之间关系的数学模型.与某钢厂100 t UHP电弧炉实际冶炼结果对比表明,该模型可以比较准确地预测熔池含碳量的变化和控制冶炼终点碳含量.研究表明,在高碳范围内脱碳速度与供氧流量成正比;在中碳范围内,其脱碳速度与熔池碳含量的平方根成正比;在低碳范围内脱碳速度与熔池碳含量成正比.用最小经济吹氧量曲线,即根据钢水碳含量降低相应递减吹氧量的吹氧方式,可以获得最佳的冶炼效果.