期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Study on the Pyrolytic Carbon Generated by the Electric Heating CVD Method 被引量:1
1
作者 徐先锋 欧阳甜 +1 位作者 ZENG Lingsheng CHAI Lingzhi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期409-413,共5页
A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon sour... A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment. 展开更多
关键词 C/C composite materials electric heating method chemical vapor deposition pyrolytic carbon
下载PDF
Catalytic CVD Growth of Carbon Nanotubes by Electric Heating Method
2
作者 徐先锋 欧阳甜 +3 位作者 CHAI Lingzhi ZENG Lingsheng LI Gang CHEN Yue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期136-139,共4页
Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loa... Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time. 展开更多
关键词 electric heating method catalytic CVD nickel plating carbon nanotubes
下载PDF
Boosting methylcyclohexane dehydrogenation over Pt-based structured catalysts by internal electric heating 被引量:1
3
作者 Wenhan Wang Guoqing Cui +4 位作者 Cunji Yan Xuejie Wang Yang Yang Chunming Xu Guiyuan Jiang 《Nano Research》 SCIE EI CSCD 2023年第10期12215-12222,共8页
Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient cataly... Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient catalytic way with good performance remains an enormous challenge.Herein,an internal electric heating(IEH)assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect.The Pt/Al2O_(3)on Fe foam(Pt/Al2O_(3)/FF)with unique threedimensional network structure was constructed.The catalysts were studied in a comprehensive way including X-ray diffraction(XRD),scanning electron microscopy(SEM)-mapping,in situ extended X-ray absorption fine structure(EXAFS),and in situ COFourier transform infrared(FTIR)measurements.It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt^(−1)·min^(−1),which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating(CH)mode.In combination with measurements from high-resolution infrared thermometer,the equations of heat transfer rate,and reaction heat analysis results,the Pt/Al2O_(3)/FF not only has high mass and heat transfer ability to promote catalytic performance,but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode.In addition,the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode,proved by the operando MCH-FTIR results.Therefore,the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance,which has a broad application potential in hydrogen storage and other catalytic reaction processes. 展开更多
关键词 Pt/Al2O_(3)/Fe foam(FF)structured catalyst internal electrical heating hydrogen methylcyclohexane dehydrogenation heat transfer
原文传递
Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump
4
作者 Jingxiao Han Chuanzhao Zhang +5 位作者 LuWang ZengjunChang Qing Zhao Ying Shi JiaruiWu Xiangfei Kong 《Energy Engineering》 EI 2023年第9期1991-2011,共21页
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e... For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases. 展开更多
关键词 electric heat storage solar energy air source heat pump multi-objective optimization method LOCH
下载PDF
Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics
5
作者 Hang Cui Hongbo Ren +3 位作者 Qiong Wu Hang Lv Qifen Li Weisheng Zhou 《Energy Engineering》 EI 2024年第3期581-601,共21页
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau... Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method. 展开更多
关键词 Cascading fault degradation characteristics integrated heat and electricity system multi-energy flow
下载PDF
A Deep Neural Network Coordination Model for Electric Heating and Cooling Loads Based on IoT Data 被引量:5
6
作者 Hongyang Jin Yun Teng +2 位作者 Tieyan Zhang Zedi Wang Zhe Chen 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第1期22-30,共9页
As the ubiquitous electric power internet of things(UEPIoT)evolves and IoT data increases,traditional scheduling modes for load dispatch centers have yielded a variety of chal-lenges such as calculation of real-time o... As the ubiquitous electric power internet of things(UEPIoT)evolves and IoT data increases,traditional scheduling modes for load dispatch centers have yielded a variety of chal-lenges such as calculation of real-time optimization,extraction of time-varying characteristics and formulation of coordinated scheduling strategy for capacity optimization of electric heating and cooling loads.In this paper,a deep neural network coor-dination model for electric heating and cooling loads based on the situation awareness(SA)of thermostatically controlled loads(TCLs)is proposed.First,a sliding window is used to adaptively preprocess the IoT node data with uncertainty.According to personal thermal comfort(PTC)and peak shaving contribution(PSC),a dynamic model for loads is proposed;meanwhile,personalized behavior and consumer psychology are integrated into a flexible regulation model of TCLs.Then,a deep Q-network(DQN)-based approach,using the thermal comfort and electricity cost as the comprehensive reward function,is proposed to solve the sequential decision problem.Finally,the simulation model is designed to support the validity of the deep neural network coordination model for electric heating and cooling loads,by using UEPIoT intelligent dispatching system data.The case study demonstrates that the proposed method can efficiently manage coordination with large-scale electric heating and cooling loads. 展开更多
关键词 Deep neural network electric heating and cooling load IoT data reinforcement learning
原文传递
Electrical Conductivity,Oil Absorption and Electric Heating of Carbon Black-modified Carbon Nanofibers 被引量:3
7
作者 HUANG Hedong GUO Zeyu +2 位作者 YANG Pengyan CHEN Peng Wu Jie 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2021年第3期541-548,共8页
Carbon-black-modified carbon nanofibers were prepared by electrospinning,and the effects of the carbon black content and processing temperature on the physical and chemical properties of the resulting composites were ... Carbon-black-modified carbon nanofibers were prepared by electrospinning,and the effects of the carbon black content and processing temperature on the physical and chemical properties of the resulting composites were investigated.The results showed that the conductivity of carbon-black-modified nanofibers increased with the carbon black content.The addition of carbon black in a 20%mass ratio increased the conductivity of the composite(0.75 S/cm)by 230%compared with the undoped nano-fiber(2.47 S/cm),while the adulteration with 5%CB allowed the preservation of the mechanical properties of the composites.The fabricated carbon-black/carbon-nanocomposite fibers exhibited excellent oil absorption and electrothermal conversion performance.Furthermore,the conductivity and oil absorption capacity increased with increasing carbonization temperature.With a carbonization temperature of 1000℃(5%carbon black),the voltage was 31 V,the current was 0.66 A,and the surface temperature of the composite reached 234.1℃.The overall enhancement in physical properties upon the addition of even low amounts of carbon black makes these composites advantageous for future industrial applications. 展开更多
关键词 Carbon black Carbon nanofiber ELECTROSPINNING CONDUCTIVITY Oil absorption electric heating film
原文传递
COUPLED ELECTRICAL-THERMAL-MECHANICAL ANALYSIS FOR ELECTRICAL/LASER HEATING ASSISTED BLANKING
8
作者 PENG Xianghe QIN Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期294-299,共6页
A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part... A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part blanking, are investigated with FE simulations. Results show that electrical heating would result in an advantageous distribution of temperature in a 316 stainless steel work-material. A desired temperature distribution may also be achievable for a copper work-material, if laser beam is used. Both electrical heating and laser-heating enable to reduce the blanking force and increase the aspect ratio achievable by blanking. The simulation also demonstrates that both electrical heating and laser-heating can result in desired temperature-distributions at sufficiently high heating-rates, ease of implementation and application. Comparatively, electrical heating could generate more favorable temperature distribution for small-part blanking. 展开更多
关键词 BLANKING electrical heating Laser-heating
下载PDF
Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria
9
作者 Xiaoyan Liu Ting Zhang +8 位作者 Mengchen Xu Yang Li Haiqing Wang Yuke Chen Xuzihan Zhang Zenan Wang Xiaoyan Li Weijia Zhou Hong Liu 《Nano Research》 SCIE EI CSCD 2024年第3期1578-1584,共7页
Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there ... Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there are still some challenges in fabricating metal films in template-free and normal temperature environment.In this work,we report a flexible and rapid laser metal transfer(LMT)technique for fabricating the various metal films(Cu,Ni,Sn,Al,Fe,and Ag)with different patterns without templates on arbitrary substrates(glass,polyimide(PI)films,and aluminum nitride(AlN)ceramic).Especially,the obtained transparent conductive glass displays high transmittance(more than 90%)and adjustable resistances(≈5Ω).According to the Joule effect,the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280℃ at 2 V in a short time(≈60 s)and remains stable at 120℃ over 12 h.At last,the multifunctional glass with Cu patterns also shows excellent bactericidal activity(≈95%).This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices. 展开更多
关键词 laser metal transfer(LMT) transparent conductive glass electrical heating copper pattern ANTIBACTERIAL
原文传递
Observability Analysis of Integrated Electricity and Heating Systems with Thermal Quasi-dynamics in Pipelines
10
作者 Zhigang Li Wenjian Zheng +2 位作者 Junbo Zhao J.H.Zheng Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1145-1158,共14页
Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the mea... Observability analysis(OA)is vital to obtaining the available input measurements of state estimation(SE)in an integrated electricity and heating system(IEHS).Considering the thermal quasi-dynamics in pipelines,the measurement equations in heating systems are dependent on the estimated results,leading to an interdependency between OA and SE.Conventional OA methods require measurement equations be known exactly before SE is performed,and they are not applicable to IEHSs.To bridge this gap,a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency.As its core procedure,the observable state identification and observability restoration are formulated in terms of integer linear programming.Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation. 展开更多
关键词 Integrated electricity and heating system MEASUREMENT observability analysis state estimation thermal quasi-dynamics
原文传递
Optimal Operation of Integrated Heat and Electricity Systems:A Tightening McCormick Approach 被引量:6
11
作者 Lirong Deng Hongbin Sun +3 位作者 Baoju Li Yong Sun Tianshu Yang Xuan Zhang 《Engineering》 SCIE EI 2021年第8期1076-1086,共11页
Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combi... Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combined operation presents a highly nonlinear and nonconvex optimization problem,mainly due to the bilinear terms in the heat flow model—that is,the product of the mass flow rate and the nodal temperature.Existing methods,such as nonlinear optimization,generalized Benders decomposition,and convex relaxation,still present challenges in achieving a satisfactory performance in terms of solution quality and computational efficiency.To resolve this problem,we herein first reformulate the district heating network model through an equivalent transformation and variable substitution.The reformulated model has only one set of nonconvex constraints with reduced bilinear terms,and the remaining constraints are linear.Such a reformulation not only ensures optimality,but also accelerates the solving process.To relax the remaining bilinear constraints,we then apply McCormick envelopes and obtain an objective lower bound of the reformulated model.To improve the quality of the McCormick relaxation,we employ a piecewise McCormick technique that partitions the domain of one of the variables of the bilinear terms into several disjoint regions in order to derive strengthened lower and upper bounds of the partitioned variables.We propose a heuristic tightening method to further constrict the strengthened bounds derived from the piecewise McCormick technique and recover a nearby feasible solution.Case studies show that,compared with the interior point method and the method implemented in a global bilinear solver,the proposed tightening McCormick method quickly solves the heat–electricity operation problem with an acceptable feasibility check and optimality. 展开更多
关键词 Integrated heat and electricity system Convex relaxation Operation McCormick envelopes
下载PDF
Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads
12
作者 迟锋 孙连亮 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期87-91,共5页
Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non- equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of ... Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non- equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of the dot level. The current's strength and the spin polarization are further manipulated by changing the frequency of an applied photon field and the ferromagnetism on the leads. We find that the associated heat by this spin- polarized current emerges even if the bias voltage is smaller than the phonon energy quanta and obvious negative differential of the heat generation develops when the photon frequency exceeds that of the phonon. It is also found that both the strength and the resonant peaks' position of the heat generation can be tuned by changing the value and the arrangement configurations of the magnetic moments of the two leads, and then provides an effective method to generate large spin-polarized current with weak heat. Such a result may be useful in designing low energy consumption spintronic devices. 展开更多
关键词 by on heat is of in Photon-Assisted Heat Generation by electric Current in a Quantum Dot Attached to Ferromagnetic Leads
下载PDF
Visible transparent,infrared stealthy polymeric films with nanocoating of ITO@MXene enable efficient passive radiative heating and solar/electric thermal conversion 被引量:1
13
作者 Xingyuan Du Xiangxin Li +6 位作者 Yuxuan Zhang Xinyi Guo Zhengji Li Yanxia Cao Yanyu Yang Wanjie Wang Jianfeng Wang 《Nano Research》 SCIE EI CSCD 2023年第2期3326-3332,共7页
Visible transparent yet low infrared-emissivity(ε)polymeric materials are highly anticipated in many applications,whereas the fabrication of which remains a formidable challenge.Herein,visible transparent,flexible,an... Visible transparent yet low infrared-emissivity(ε)polymeric materials are highly anticipated in many applications,whereas the fabrication of which remains a formidable challenge.Herein,visible transparent,flexible,and low-εpolymeric films were fabricated by nanocoating decoration of indium tin oxide(ITO)and MXene on polyethylene terephthalate(PET)film surface through magnetron sputtering and spray coating,respectively.The obtained PET-ITO@MXene(PET-IM)film exhibits lowεof 24.7%and high visible transmittance exceeding 50%,endowing it with excellent visible transparent infrared stealthy by reducing human skin radiation temperature from 32 to 20.8°C,and remarkable zero-energy passive radiative heating capability(5.7°C).Meanwhile,the transparent low-εPET-IM film has high solar absorptivity and electrical conductivity,enabling superior solar/electric to thermal conversion performance.Notably,the three heating modes of passive radiative and active solar/electric can be integrated together to cope with complex heating scenarios.These visible transparent low-εpolymeric films are highly promising in infrared stealth,building daylighting and thermal management,and personal precision heating. 展开更多
关键词 transparent polymeric film nanocoating decoration ITO@MXene low infrared emissivity passive radiative heating solar/electric heating
原文传递
Low infrared emitter from Ti3C2Tx MXene towards highly-efficient electric/solar and passive radiative heating 被引量:2
14
作者 Mingming Shen Jiahao Ni +3 位作者 Yanxia Cao Yanyu Yang Wanjie Wang Jianfeng Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第2期32-40,共9页
Realizing all-day and all-weather energy-saving heating is crucial for mitigating the global energy and ecology crisis.Electric/solar heating are two promising heating approaches,yet materials with high elec-trical co... Realizing all-day and all-weather energy-saving heating is crucial for mitigating the global energy and ecology crisis.Electric/solar heating are two promising heating approaches,yet materials with high elec-trical conductivity,high solar absorptivity,and low infrared emissivity at the same time are rare in na-ture,which are highly anticipated and of great significance for highly efficient electric/solar heating.In this work,we demonstrate that Ti_(3)C_(2)T_(x) MXene with low IR emissivity(14.5%)fills the gap in the absence of the above materials,exhibiting a remarkable electric/solar heating performance.The saturated heating temperature of Ti_(3)C_(2)T_(x) film reaches a record-high value of 201°C at a low driving voltage of 1.5 V,and reaches 84.3°C under practical solar irradiation(750 W/m^(2))with a high solar to the thermal conversion efficiency of 75.3%,which is far superior to other reported materials.Meanwhile,the low IR emissivity endows Ti_(3)C_(2)T_(x) with a remarkable passive radiative heating capability of 7.0°C,ensuring zero-energy heating without electric/solar energy supply.The intrinsic characteristic of high electrical conductivity,high solar absorptivity,and low IR emissivity makes Ti_(3)C_(2)T_(x) unique existence in nature,which is highly promising for all-day and all-weather energy-saving heating. 展开更多
关键词 Ti3C2Tx MXene Low infrared emitter Thermal radiation emission electric/solar heating Passive radiative heating
原文传递
Quasi-dynamic Interactions and Security Control of Integrated Electricity and Heating Systems in Normal Operations 被引量:8
15
作者 Zhaoguang Pan Jianzhong Wu +2 位作者 Hongbin Sun Qinglai Guo Muditha Abeysekera 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第1期120-129,共10页
Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affecte... Coupling between electricity systems and heating systems are becoming stronger,leading to more flexible and more complex interactions between these systems.The operation of integrated energy systems is greatly affected,especially when security is concerned.Steady-state analysis methods have been widely studied in recent research,which is far from enough when the slow thermal dynamics of heating networks are introduced.Therefore,an integrated quasi-dynamic model of integrated electricity and heating systems is developed.The model combines a heating network dynamic thermal model and the sequential steady-state models of electricity networks,coupling components,and heating network hydraulics.Based on this model,a simulation method is proposed and quasi-dynamic interactions between electricity systems and heating systems are quantified with the highlights of transport delay.Then the quasi-dynamic interactions were applied using security control to relieve congestion in electricity systems.Results show that both the transport delay and control strategies have significant influences on the quasi-dynamic interactions. 展开更多
关键词 Integrated electricity and heating integrated energy system INTERACTIONS QUASI-DYNAMIC security control transport delay
原文传递
New Heat Treatment Technology for Grain Refining of Structural Steel 被引量:2
16
作者 Lü Bo ZHANG Fu-cheng +1 位作者 CAO Guo-hua ZHANG Ji-ming 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2005年第6期49-53,共5页
The application of electrical contact heating (ECH) in austenitic grain refining of ultra-pure 42CrMoVNb steel was introduced. The ECH equipment was designed to reach uniform heating of uniform heat transfer in the ... The application of electrical contact heating (ECH) in austenitic grain refining of ultra-pure 42CrMoVNb steel was introduced. The ECH equipment was designed to reach uniform heating of uniform heat transfer in the sample. The 42CrMoVNb steel treated possesses uniform microstructure with an average austenite grain size of 1.4 μm, higher strength (1 538 MPa) and impact toughness (81J/cm^2). 展开更多
关键词 electrical contact heating medium carbon alloy steel ultrafine grain 42CrMoVNb
下载PDF
Intermetallic Evolution of Al–Si-Coated Hot Stamping Steel During Modified Electrically Assisted Rapid Heating 被引量:2
17
作者 Kieu-Anh Dinh Sung-Tae Hong +2 位作者 Tien Viet Luu Moon-Jo Kim Heung Nam Han 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第12期1327-1333,共7页
Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid... Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid heating, a continuous electric current for a suitable duration is applied to a specimen to heat it to a temperature slightly below the melting temperature of the coating. The temperature of the specimen is then kept constant for a specified dwell time. The result of the microstructural analysis shows that the modified EA rapid heating could effectively increase the thickness of the intermetallic layer between the coating and steel substrate much faster than conventional furnace heating and induction heating. The effectiveness of EA rapid heating may be due to the athermal effect of the electric current on the mobility of atoms, in addition to the well-known resistance heating effect. EA rapid heating also provides a technical advantage in that partial austenization can be easily achieved by properly placing the electrodes, as demonstrated in the present study. 展开更多
关键词 Hot stamping electrically assisted rapid heating Partial austenization Al–Si-coated hot stamping steel
原文传递
Combination of steam-enhanced extraction and electrical resistance heating for efficient remediation of perchloroethylene-contaminated soil:Coupling merits and energy consumption 被引量:1
18
作者 Rui Yue Zhikang Chen +5 位作者 Liujun Liu Lipu Yin Yicheng Qiu Xianhui Wang Zhicheng Wang Xuhui Mao 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第11期249-260,共12页
In situ thermal desorption(ISTD)technology effectively remediates soil contaminated by dense nonaqueous phase liquids(DNAPLs).However,more efforts are required to minimize the energy consumption of ISTD technology.Thi... In situ thermal desorption(ISTD)technology effectively remediates soil contaminated by dense nonaqueous phase liquids(DNAPLs).However,more efforts are required to minimize the energy consumption of ISTD technology.This study developed a laboratory-scale experimental device to explore the coupling merits of two traditional desorption technologies:steam-enhanced extraction(SEE)and electrical resistance heating(ERH).The results showed that injecting high-density steam(>1 g/min)into loam or clay with relatively high moisture content(>13.3%)could fracture the soil matrix and lead to the occurrence of the preferential flow of steam.For ERH alone,the electrical resistance and soil moisture loss were critical factors influencing heating power.When ERH and SEE were combined,preheating soil by ERH could increase soil permeability,effectively alleviating the problem of preferential flow of SEE.Meanwhile,steam injection heated the soil and provided moisture for maintaining soil electrical conductivity,thereby ensuring power stability in the ERH process.Compared with ERH alone(8 V/cm)and SEE alone(1 g/min steam),the energy consumption of combined method in remediating perchloroethylene-contaminated soil was reduced by 39.3%and 52.9%,respectively.These findings indicate that the combined method is more favorable than ERH or SEE alone for remediating DNAPL-contaminated subsurfaces when considering ISTD technology. 展开更多
关键词 Steam-enhanced extraction electrical resistance heating Dense nonaqueous phase liquid Soil remediation Energy consumption
原文传递
Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy 被引量:3
19
作者 S.Engin U.Byük +1 位作者 H.Kaya N.Maraslι 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期659-664,共6页
Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spac... Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spacing were measured from transverse sections of the samples.The dependences of the eutectic spacing and undercooling on growth rate are determined as λ=9.21V-0.53 and ΔT=0.0245V0.53,respectively.The results obtained in this work were compared with the Jackson-Hunt eutectic theory and the similar experimental results in the literature.Microhardness of directionally solidified samples was also measured by using a microhardness test device.The dependency of the microhardness on growth rate is found as Hv=115.64V0.13.Afterwards,the electrical resistivity (r) of the casting alloy changes from 40×10-9 to 108×10-9 Ω·m with the temperature rising in the range of 300-630 K.The enthalpy of fusion (ΔH) and specific heat (Cp) for the Zn-Al eutectic alloy are calculated to be 113.37 J/g and 0.309 J/(g·K),respectively by means of differential scanning calorimetry (DSC) from heating trace during the transformation from liquid to solid. 展开更多
关键词 eutectic alloys directional solidification microhardness electrical conductivity enthalpy specific heat
下载PDF
STRUCTURE IMPROVEMENT AND TEMPERATURE FIELD SIMULATION OF PREPARING NANOPOWDER BY EVAPORATION-CONDENSATION METHOD
20
作者 J.S. Bao Y. Yin T.G. Liu Z.Y. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第3期178-182,共5页
A new apparatus, with a segregable conical water cooling condenser, which is heated by an electric arc using the evaporation-condensation method to prepare carbon-coated nanopowder, has been developed by the authors. ... A new apparatus, with a segregable conical water cooling condenser, which is heated by an electric arc using the evaporation-condensation method to prepare carbon-coated nanopowder, has been developed by the authors. Numerical simulation of the temperature field is done by the ANSYS software, and temperature in the reaction vessel is measured with the help of an experiment, to verify the simulation result. Influence of the temperature field in the reaction vessel, on the process of preparing nanopowder is then discussed simply. It is shown that the segregable conical water cooling condenser and carbon-coated surface process can be used to prepare steady carbon-coated metal nanopowder, at a lower cost and higher yield rate than the traditional structure. Simulation of the temperature field in the apparatus shows that the arc heating method can form a temperature field in the apparatus, which is quite favorable for nanopowder formation. Experiments show that the rational parameters using this apparatus, with the arc heating method to prepare carbon-coated nanopowder are electricity 60-100 A and arc length 5-8 mm. 展开更多
关键词 Evaporation-condensation method electric arc heating Temperature field Condenser structure
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部