The aim of this paper is to determine the power losses recorded by a PV generator operating under partial shading conditions. These losses are evaluated through two distinct methods. The first method is based on mathe...The aim of this paper is to determine the power losses recorded by a PV generator operating under partial shading conditions. These losses are evaluated through two distinct methods. The first method is based on mathematical modeling, while the second is based on Simulink’s physical model. The losses recorded are considerable and increase as a function of the increase in the percentage of shading up to a limit value where they become constant in the case where an ideal by-pass diode is connected in parallel with the modules. This limit value is non-existent in the case where the bypass diode is not ideal, which in fact corresponds to the real model. However, it emerges that the power losses are minimized in a PV system comprising bypass diodes, in particular in the case where the partial shading is considerable.展开更多
文摘The aim of this paper is to determine the power losses recorded by a PV generator operating under partial shading conditions. These losses are evaluated through two distinct methods. The first method is based on mathematical modeling, while the second is based on Simulink’s physical model. The losses recorded are considerable and increase as a function of the increase in the percentage of shading up to a limit value where they become constant in the case where an ideal by-pass diode is connected in parallel with the modules. This limit value is non-existent in the case where the bypass diode is not ideal, which in fact corresponds to the real model. However, it emerges that the power losses are minimized in a PV system comprising bypass diodes, in particular in the case where the partial shading is considerable.