The development of battery electric(BE)heavy-duty trucks(HDTs)is highly limited to the short cycling life of batteries.In this paper,we propose a battery aging-conscious control strategy for extended battery life by o...The development of battery electric(BE)heavy-duty trucks(HDTs)is highly limited to the short cycling life of batteries.In this paper,we propose a battery aging-conscious control strategy for extended battery life by optimizing the speed trajectory of BE HDT.A state-space model is constructed by connecting the vehicle dynamics and battery state of charge,and a mechanism-based aging model of battery is then introduced to formulate the optimization problem for minimal battery aging and energy consumption.The optimization problem is solved within a model predictive control framework for the real-time speed control of the vehicle.A non-cooperative platooning controller is further developed for the vehicle in adaptation to the traffic,where the intervehicular distance is controlled for reducing the air drag coefficient so that both the energy consumption and battery aging are improved.Simulation results show that for the single-vehicle controller,the battery degradation and energy consumption are,respectively,reduced by up to 25.7%and 3.2%compared with the cruise control strategy.Based on the non-cooperative controller,the HDT is able to follow preceding vehicles with different parameters with battery aging and energy consumption further,respectively,reduced by 2%–5%and 9%–10%compared with those of the single-vehicle controller.展开更多
Medium-duty/heavy-duty trucks(MD/HDTs)are yet to be included in India’s electric mobility plans.With the improvement of electric vehicle(EV)technologies,there is a growing interest in battery-electric trucks(BETs)fro...Medium-duty/heavy-duty trucks(MD/HDTs)are yet to be included in India’s electric mobility plans.With the improvement of electric vehicle(EV)technologies,there is a growing interest in battery-electric trucks(BETs)from original equipment manufacturers(OEMs).The time is opportune to consider electrification as a future direction for road freight in India.Accordingly,this article presents the results of an energy consumption simulation study of a BET under Indian conditions.This study specifically considered an MDBET over a domestic drive cycle.These energy consumption figures can facilitate future studies that analyze the technical and practical feasibility of BETs in the country.In addition,the article provides the requisite groundwork for BET modeling for a simulation study by reviewing available EV powertrain systems and components.Appropriate powertrain considerations are thereby obtained for a typical medium-duty/heavy-duty battery-electric truck(MD/HDBET)in the Indian context.展开更多
基金funded by the Research Start-Up Funding of Chongqing University(Grant No.02090011044160)the National Natural Science Foundation of China(Grant No.51907136)。
文摘The development of battery electric(BE)heavy-duty trucks(HDTs)is highly limited to the short cycling life of batteries.In this paper,we propose a battery aging-conscious control strategy for extended battery life by optimizing the speed trajectory of BE HDT.A state-space model is constructed by connecting the vehicle dynamics and battery state of charge,and a mechanism-based aging model of battery is then introduced to formulate the optimization problem for minimal battery aging and energy consumption.The optimization problem is solved within a model predictive control framework for the real-time speed control of the vehicle.A non-cooperative platooning controller is further developed for the vehicle in adaptation to the traffic,where the intervehicular distance is controlled for reducing the air drag coefficient so that both the energy consumption and battery aging are improved.Simulation results show that for the single-vehicle controller,the battery degradation and energy consumption are,respectively,reduced by up to 25.7%and 3.2%compared with the cruise control strategy.Based on the non-cooperative controller,the HDT is able to follow preceding vehicles with different parameters with battery aging and energy consumption further,respectively,reduced by 2%–5%and 9%–10%compared with those of the single-vehicle controller.
文摘Medium-duty/heavy-duty trucks(MD/HDTs)are yet to be included in India’s electric mobility plans.With the improvement of electric vehicle(EV)technologies,there is a growing interest in battery-electric trucks(BETs)from original equipment manufacturers(OEMs).The time is opportune to consider electrification as a future direction for road freight in India.Accordingly,this article presents the results of an energy consumption simulation study of a BET under Indian conditions.This study specifically considered an MDBET over a domestic drive cycle.These energy consumption figures can facilitate future studies that analyze the technical and practical feasibility of BETs in the country.In addition,the article provides the requisite groundwork for BET modeling for a simulation study by reviewing available EV powertrain systems and components.Appropriate powertrain considerations are thereby obtained for a typical medium-duty/heavy-duty battery-electric truck(MD/HDBET)in the Indian context.