期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Analysis on electrical characteristics of high-voltage GaN-based light-emitting diodes 被引量:3
1
作者 郭伟玲 闫薇薇 +4 位作者 朱彦旭 刘建朋 丁艳 崔德胜 吴国庆 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期440-443,共4页
In order to investigate their electrical characteristics, high-voltage light-emitting-diodes (HV-LEDs) each contain- ing four cells in series are fabricated. The electrical parameters including varying voltage and p... In order to investigate their electrical characteristics, high-voltage light-emitting-diodes (HV-LEDs) each contain- ing four cells in series are fabricated. The electrical parameters including varying voltage and parasitic effect are studied. It is shown that the ideality factors (IFs) of the HV-LEDs with different numbers of cells are 1.6, 3.4, 4.7, and 6.4. IF increases linearly with the number of cells increasing. Moreover, the performance of the HV-LED with failure cells is examined, The analysis indicates that the failure cell has a parallel resistance which induces the leakage of the failure cell. The series resistance of the failure cell is 76.8 Ω, while that of the normal cell is 21.3 Ω. The scanning electron microscope (SEM) image indicates that different metal layers do not contact well. It is hard to deposit the metal layers in the deep isolation trenches. The fabrication process of HV-LEDs needs to be optimized. 展开更多
关键词 high-voltage light-emitting diode electrical characteristics ideality factor series resis-tance
下载PDF
Electrical Characteristics of Pulsed Corona Discharge Plasmas in Chitosan Solution 被引量:2
2
作者 鲁娜 冯迎春 +3 位作者 李杰 宿艳 商克峰 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第2期128-133,共6页
Pulsed discharge plasma has exhibited active potential to prepare low molecular weight chitosan. In the present study, the viscosity of ehitosan solution was decreased noticeably after treated with pulsed corona disch... Pulsed discharge plasma has exhibited active potential to prepare low molecular weight chitosan. In the present study, the viscosity of ehitosan solution was decreased noticeably after treated with pulsed corona discharge plasma. An experimental investigation on electrical characteristics of pulsed corona discharge plasma in chitosan solution was conducted with a view toward getting insight into discharge process. Factors affecting I-V curve, single pulse injec- tion energy and pulse width were studied. Experimental results showed positive effect of pulsed peak voltage on discharge plasma in chitosan solution. Pulse-forming capacitor greatly influenced the discharge form, and 4 nF was observed as a suitable value for efficiently generating stable discharge plasmas. As the electrode distance was larger than 10 ram, it had slight impact on dis- charge plasma due to the excellent conductive-property of chitosan solution. The injection energy significantly increased with air flow rate, while the pulse width hardly changed as the air flow rate increased from 0.5 m^3/h to 1.0 m^3/h. This study is expected to provide reference for promoting the application of pulsed corona discharge plasma to ehitosan solution treatment. 展开更多
关键词 electrical characteristics pulsed corona discharge plasma chitosan solution
下载PDF
Electrical characteristics of new three-phase traction power supply system for rail transit 被引量:1
3
作者 Xiaohong Huang Hanlin Wang +4 位作者 Qunzhan Li Naiqi Yang Tao Ren You Peng Haoyang Li 《Railway Engineering Science》 2023年第1期75-88,共14页
A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.... A novel three-phase traction power supply system is proposed to eliminate the adverse effects caused by electric phase separation in catenary and accomplish a unifying manner of traction power supply for rail transit.With the application of two-stage three-phase continuous power supply structure,the electrical characteristics exhibit new features differing from the existing traction system.In this work,the principle for voltage levels determining two-stage network is dissected in accordance with the requirements of traction network and electric locomotive.The equivalent model of three-phase traction system is built for deducing the formula of current distribution and voltage losses.Based on the chain network model of the traction network,a simulation model is established to analyze the electrical characteristics such as traction current distribution,voltage losses,system equivalent impedance,voltage distribution,voltage unbalance and regenerative energy utilization.In a few words,quite a lot traction current of about 99%is undertaken by long-section cable network.The proportion of system voltage losses is small attributed to the two-stage three-phase power supply structure,and the voltage unbal-ance caused by impedance asymmetry of traction network is less than 1‰.In addition,the utilization rate of regenerative energy for locomotive achieves a significant promotion of over 97%. 展开更多
关键词 Three-phase AC power supply Two-stage power supply structure electrical characteristics Current distribution Voltage losses Regenerative energy
下载PDF
Comprehensive simulation of snow crystal deposition and electric field characteristics of composite sheath improved porcelain cantilever insulator in a wind and snow environment 被引量:1
4
作者 SHENG Wangqun LI Gang +2 位作者 LI Yanzhe LI Baoxue ZHAO Shanpeng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期379-389,共11页
The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-po... The installed porcelain insulators on existing railway lines in China are prone to“snow flash”in winter.In order to prevent the occurrence of“snow flash”and improve the reliability of the insulators,a composite-porcelain insulator is designed.A multi-physics coupling simulation model is built based on numerical simulation methods of the electromagnetic field theory and computational fluid dynamics.Taking average electric field intensity on the surface of the insulator as the characteristic parameter of the electric field distortion degree and the snow crystal collision coefficient and distribution coefficient as the characteristic parameter of snow crystal deposition,the characteristics of snow crystal deposition under different wind speeds and wind direction angles and the electric field characteristics under two snow cover types are analyzed.The simulation results show that the average electric field intensity of composite-porcelain insulators is 10.4%and 13.8%,respectively,lower than that of porcelain insulators in vertical and horizontal wind snow covers,which can effectively reduce the degree of electric field distortion.The collision coefficient of snow crystals on the surface of the composite-porcelain insulator sheds is 16.0%higher than that of the porcelain insulator,and the collision coefficient of the trunk and the fittings are lower 20.2%and 11.9%than that of the porcelain insulator.There is almost no change in the distribution coefficient of the insulator sheds. 展开更多
关键词 porcelain cantilever insulator snow flash snow crystal deposition electric field characteristics simulation
下载PDF
Influence of Post-Annealing on Electrical Characteristics of Thin-Film Transistors with Atomic-Layer-Deposited ZnO-Channel/Al_2O_3-Dielectric
5
作者 王有航 马倩 +4 位作者 郑丽丽 刘文军 丁士进 卢红亮 张卫 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期131-134,共4页
High-performance thin-film transistors (TFTs) with a low thermal budget are highly desired for flexible electronic applications. In this work, the TFTs with atomic layer deposited ZnO-channel/Al2O3-dielectric are fa... High-performance thin-film transistors (TFTs) with a low thermal budget are highly desired for flexible electronic applications. In this work, the TFTs with atomic layer deposited ZnO-channel/Al2O3-dielectric are fabricated under the maximum process temperature of 200℃. First, we investigate the effect of post-annealing environment such as N2, H2-N2 (4%) and O2 on the device performance, revealing that o2 annealing can greatly enhance the device performance. Further, we compare the influences of annealing temperature and time on the device performance. It is found that long anneMing at 200℃is equivalent to and even outperforms short annealing at 300℃. Excellent electrical characteristics of the TFTs are demonstrated after 02 anneMing at 200℃ for 35 rain, including a low off-current of 2.3 × 10-13 A, a small sub-threshold swing of 245 m V/dec, a large on/off current ratio of 7.6×10s, and a high electron effective mobility of 22.1cm2/V.s. Under negative gate bias stress at -10 V, the above devices show better electrical stabilities than those post-annealed at 300℃. Thus the fabricated high-performance ZnO TFT with a low thermal budget is very promising for flexible electronic applications. 展开更多
关键词 ZNO in of Influence of Post-Annealing on electrical characteristics of Thin-Film Transistors with Atomic-Layer-Deposited ZnO-Channel/Al2O for TFT with Al on
下载PDF
Electrical characteristics of SiGe-on-insulator nMOSFET and SiGe-silicon-on-aluminum nitride nMOSFET
6
作者 刘红侠 李斌 +2 位作者 李劲 袁博 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期472-477,共6页
This paper investigates the electrical characteristics and temperature distribution of strained Si/SiGe n-type metal oxide semiconductor field effect transistor (nMOSFET) fabricated on silicon-on-aluminum nitride (... This paper investigates the electrical characteristics and temperature distribution of strained Si/SiGe n-type metal oxide semiconductor field effect transistor (nMOSFET) fabricated on silicon-on-aluminum nitride (SOAN) substrate. This novel structure is named SGSOAN nMOSFET. A comparative study of self-heating effect of nMOSFET fabricated on SGOI and SGSOAN is presented. Numerical results show that this novel SGSOAN structure can greatly eliminate excessive self-heating in devices, which gives a more promising application for silicon on insulator to work at high temperatures. 展开更多
关键词 electrical characteristics self-heating effect SiGe-on insulator SiGe-silicon-on-aluminum nitride
下载PDF
Ion property and electrical characteristics of 60MHz very-high-frequency magnetron discharge at low pressure
7
作者 Amin JIANG Chao YE +2 位作者 Xiangying WANG Min ZHU Su ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第10期84-89,共6页
The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to th... The pre-ionized 60 MHz very-high-frequency (VHF) magnetron discharge at low pressure, assisted by inductively coupled plasma (ICP) discharge, was developed. The measurement of ion flux density and ion energy to the substrate was carried out by a retarding field energy analyzer. The electric characteristics of discharge were also investigated by voltage-current probe technique. It was found that by reducing the discharge pressure of VHF magnetron discharge from 5 to 1 Pa, the ion flux density increased about four times, meanwhile the ion energy also increased doubly. The electric characteristics of discharge also showed that a little improvement of sputtering effectiveness was achieved by reducing discharge pressure. Therefore, the deposition property of VHF (60 MHz) magnetron sputtering can be improved by reducing the discharge pressure using the ICP-assisted pre-ionized discharge. 展开更多
关键词 VHF magnetron sputtering low pressure discharge ion property electric characteristic
下载PDF
Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10 K to 400 K
8
作者 Yuan Liu Li Wang +4 位作者 Shu-Ting Cai Ya-Yi Chen Rongsheng Chen Xiao-Ming Xiongl Kui-Wei Geng 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期95-98,共4页
The transfer characteristics of amorphous indium-zinc-oxide thin film transistors are measured in the temperature range of 10-400K. The variation of electrical parameters (threshold voltage, field effect mobility, su... The transfer characteristics of amorphous indium-zinc-oxide thin film transistors are measured in the temperature range of 10-400K. The variation of electrical parameters (threshold voltage, field effect mobility, sub-threshold swing, and leafage current) with decreasing temperature are then extracted and analyzed. Moreover, the dom- inated carrier transport mechanisms at different temperature regions are investigated. The experimental data show that the carrier transport mechanism may change from trap-limited conduction to variable range hopping conduction at lower temperature. Moreover, the field effect mobilities are also extracted and simulated at various temperatures. 展开更多
关键词 In exp Temperature Dependence of electrical characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10 K to 400 K
下载PDF
Illumination and Voltage Dependence of Electrical Characteristics of Au/0.03 Graphene-Doped PVA/n-Si Structures via Capacitance/Conductance-Voltage Measurements
9
作者 SAHAR Alialy AHMET Kaya +1 位作者 I Uslua EMSETTIN Altmdal 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期92-96,共5页
Au/n-Si (MS) structures with a high dielectric interlayer (0.03 graphene-doped PVA) are fabricated to investigate the illumination and voltage effects on electrical and dielectric properties by using capacitance-v... Au/n-Si (MS) structures with a high dielectric interlayer (0.03 graphene-doped PVA) are fabricated to investigate the illumination and voltage effects on electrical and dielectric properties by using capacitance-voltage (C-V) and conductance-voltage (G/w-V) measurements at room temperature and at 1 MHz. Some of the main electrical parameters such as concentration of doping atoms (ND), barrier height ( ФB( C - V) ), depletion layer width (WD) and series resistance (Rs) show fairly large illumination dispersion. The voltage-dependent profile of surface states (Nss) and resistance of the structure (Ri ) are also obtained by using the dark-illumination capacitance (Cdark- Cm) and Nicollian-Brews methods, respectively, For a clear observation of changes in electrical parameters with illumination, the values of ND, WD, ФB(O- V) and Rs are drawn as a function of illumination intensity. The values of ND and WD change almost linearly with illumination intensity. On the other hand, Rs decreases almost exponentially with increasing illumination intensity whereas ФB(C - V) increases. The experimental results suggest that the use of a high dielectric interlayer (0.03 graphene-doped PVA) considerably passivates or reduces the magnitude of the surface states. The large change or dispersion in main electrical parameters can be attributed to generation of electron-hole pairs in the junction under illumination and to a good light absorption. All of these experimental results confirm that the fabricated Au/0.03 graphene-doped PVA/n-Si structure can be used as a photodiode or a capacitor in optoelectronic applications. 展开更多
关键词 SI PVA Illumination and Voltage Dependence of electrical characteristics of Au/0.03 Graphene-Doped PVA/n-Si Structures via Capacitance/Conductance-Voltage Measurements
下载PDF
Characteristics and experience in the electrical design of the first domestically-integrated large-scale air separation unit
10
作者 GONG Zhaoliang 《Baosteel Technical Research》 CAS 2009年第3期18-22,共5页
The first domestically-integrated large-scale air separation unit (ASU) with a capacity of 60 000 m^3/h was successfully built and put into operation at Baosteel. Compared with the electrical design of the imported ... The first domestically-integrated large-scale air separation unit (ASU) with a capacity of 60 000 m^3/h was successfully built and put into operation at Baosteel. Compared with the electrical design of the imported equipment of the same type,this ASU has an electrical protection interlink that is independent from the distribution control system (DCS). With the design idea of simplicity, the ASU features a simplified configuration and an audio alarm system for electrical failures. It helps reduce the failure rate of the electrical equipment and detect failures quickly and accurately. It will effectively enhance safe and stabilized production. The ASU can not only reduce the cost of investment, but also ensure a smooth and stable running of the whole electrical equipment. This study focuses on the experience and understanding of the unit design and commissioning. 展开更多
关键词 air separation unit LOCALIZATION electrical design characteristics
下载PDF
Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix
11
作者 S, Fahad M. Ali +3 位作者 S. Ahmed S. Khan S. Alam S. Akhtar 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期65-69,共5页
Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order ... Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication. 展开更多
关键词 Effect of Metal Contact and Rapid Thermal Annealing on electrical characteristics of Graphene Matrix
下载PDF
Nonvolatile ferroelectric control of electronic properties of Bi2Te3
12
作者 Xusheng Ding Yunfei Li +2 位作者 Chaoyang Kang Ye-Heng Song Weifeng Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期378-383,共6页
Nonvolatile electric-field control of the unique physical characteristics of topological insulators (TIs) is essential forthe fundamental research and development of practical electronic devices. Electrically tunable ... Nonvolatile electric-field control of the unique physical characteristics of topological insulators (TIs) is essential forthe fundamental research and development of practical electronic devices. Electrically tunable transport properties throughgating materials have been extensively investigated. However, the relatively weak and volatile tunability limits its practicalapplications in spintronics. Here, we demonstrate the nonvolatile electric-field control of Bi2Te3 transport properties viaconstructing ferroelectric Rashba architectures, i.e., 2D Bi2Te3/a-In2Se3 ferroelectric field-effect transistors. By switchingthe polarization states of a-In2Se3, the Fermi level, resistance, Fermi wave vector, carrier mobility, carrier density andmagnetoresistance (MR) of the Bi2Te3 film can be effectively modulated. Importantly, a shift of the Fermi level towards aband gap with a surface state occurs as switching to a negative polarization state, the contribution of the surface state to theconductivity then increases, thereby increasing the carrier mobility and electron coherence length significantly, resulting inthe enhanced weak anti-localization (WAL) effect. These results provide a nonvolatile electric-field control method to tunethe electronic properties of TI and can further extend to quantum transport properties. 展开更多
关键词 topological insulator weak anti-localization effect a-In2Se3 electrical transport characteristics
下载PDF
Temperature-dependent characteristics of 4H-SiC junction barrier Schottky diodes 被引量:3
13
作者 陈丰平 张玉明 +3 位作者 张义门 汤晓燕 王悦湖 陈文豪 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期400-404,共5页
The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300℃. An experimental barrier height value ... The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300℃. An experimental barrier height value of about 0.5 eV is obtained for the Ti/4H-SiC JBS diodes at room temperature. A decrease in the experimental barrier height and an increase in the ideality factor with decreasing temperature are shown. Reverse recovery testing also shows the temperature dependence of the peak recovery current density and the reverse recovery time. Finally, a discussion of reducing the reverse recovery time is presented. 展开更多
关键词 4H SiC junction barrier Schottky diode temperature dependence electrical characteristics
下载PDF
Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas 被引量:2
14
作者 张浩 朱凤森 +3 位作者 屠昕 薄拯 岑可法 李晓东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第5期473-477,共5页
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas ... In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. 展开更多
关键词 rotating gliding arc (RGA) gas flow rate optical emission spectroscopy motion behavior electrical characteristics
下载PDF
Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water 被引量:2
15
作者 张泽龙 沈洁 +2 位作者 程诚 许子牧 夏维东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第4期57-62,共6页
Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive... Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination. 展开更多
关键词 atmosphere pressure dielectric barrier discharge plasma gas–liquid discharge electrical characteristics reactive species
下载PDF
Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters
16
作者 张东璇 余俊贤 +3 位作者 李梦遥 潘杰 刘峰 方志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第11期31-41,共11页
Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable f... Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable for wide applications.In this work,the ns pulse power supply is used to excite Ar DBD and the influences of the pulse parameters(voltage amplitude,pulse width,pulse rise and fall times)on the DBD uniformity are investigated.The gas gap voltage(Ug)and conduct current(Ig)are separated from the measured voltage and current waveforms to analyze the influence of electrical parameters.The spectral line intensity ratio of two Ar excited species is used as an indicator of the electron temperature(Te).The time resolved discharge processes are recorded by an intensified charge-coupled device camera and a one-dimensional fluid model is employed to simulate the spatial and temporal distributions of electrons,ions,metastable argon atoms and Te.Combining the experimental and numerical results,the mechanism of the pulse parameters influencing on the discharge uniformity is discussed.It is shown that the space electric field intensity and the space particles'densities are mainly responsible for the variation of discharge uniformity.With the increase of voltage and pulse width,the electric field intensity and the density of space particles increased,which results in the discharge mode transition from non-uniform to uniform,and then non-uniform.Furthermore,the extension of pulse rise and fall times leads to the discharge transition from uniform to nonuniform.The results are helpful to reveal the mechanism of ns pulsed DBD mode transition and to realize controllable and uniform plasma sources at atmospheric pressure. 展开更多
关键词 nanosecond pulse dielectric barrier discharge electrical characteristics active particle UNIFORMITY
下载PDF
Event-Driven Non-Intrusive Load Monitoring Algorithm Based on Targeted Mining Multidimensional Load Characteristics
17
作者 Gang Xie Hongpeng Wang 《China Communications》 SCIE CSCD 2023年第5期40-56,共17页
Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researche... Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researches have tried their best to extract a wide variety of load features based on transient or steady state of electrical appliances,it is still very difficult for their algorithm to model the load decomposition problem of different electrical appliance types in a targeted manner to jointly mine their proposed features.This paper presents a very effective event-driven NILM solution,which aims to separately model different appliance types to mine the unique characteristics of appliances from multi-dimensional features,so that all electrical appliances can achieve the best classification performance.First,we convert the multi-classification problem into a serial multiple binary classification problem through a pre-sort model to simplify the original problem.Then,ConTrastive Loss K-Nearest Neighbour(CTLKNN)model with trainable weights is proposed to targeted mine appliance load characteristics.The simulation results show the effectiveness and stability of the proposed algorithm.Compared with existing algorithms,the proposed algorithm has improved the identification performance of all electrical appliance types. 展开更多
关键词 non-intrusive load monitoring learning to ranking smart grid electrical characteristics
下载PDF
Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power
18
作者 胡健 姜楠 +4 位作者 李杰 商克峰 鲁娜 吴彦 水野彰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第3期254-258,共5页
The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD r... The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in differ- ent discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone gener- ation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. 展开更多
关键词 electrical characteristics bipolar pulsed power DBD ozone concentration optical emission spectra
下载PDF
Electrical responses and classification of complex waterflooded layers in carbonate reservoirs: A case study of Zananor Oilfield, Kazakhstan
19
作者 WANG Fei BIAN Huiyuan +2 位作者 ZHAO Lun YU Jun TAN Chengqian 《Petroleum Exploration and Development》 2020年第6期1299-1306,共8页
Experiments of electrical responses of waterflooded layers were carried out on porous,fractured,porous-fractured and composite cores taken from carbonate reservoirs in the Zananor Oilfield,Kazakhstan to find out the e... Experiments of electrical responses of waterflooded layers were carried out on porous,fractured,porous-fractured and composite cores taken from carbonate reservoirs in the Zananor Oilfield,Kazakhstan to find out the effects of injected water salinity on electrical responses of carbonate reservoirs.On the basis of the experimental results and the mathematical model of calculating oil-water relative permeability of porous reservoirs by resistivity and the relative permeability model of two-phase flow in fractured reservoirs,the classification standards of water-flooded layers suitable for carbonate reservoirs with complex pore structure were established.The results show that the salinity of injected water is the main factor affecting the resistivity of carbonate reservoir.When low salinity water(fresh water)is injected,the relationship curve between resistivity and water saturation is U-shaped.When high salinity water(salt water)is injected,the curve is L-shaped.The classification criteria of water-flooded layers for carbonate reservoirs are as follows:(1)In porous reservoirs,the water cut(fw)is less than or equal to 5%in oil layers,5%–20%in weak water-flooded layers,20%–50%in moderately water-flooded layers,and greater than 50%in strong water-flooded layers.(2)For fractured,porous-fractured and composite reservoirs,the oil layers,weakly water-flooded layers,moderately water-flooded layers,and severely water-flooded layers have a water content of less than or equal to 5%,5%and 10%,10%to 50%,and larger than 50%respectively. 展开更多
关键词 Zananor Oilfield carbonate reservoir water-flooded layer electrical response characteristics relative permeability curve classification criterion of water-flooded level
下载PDF
Analyzing Electric Circuits with Computer Algebra
20
作者 Haiduke Sarafian 《American Journal of Computational Mathematics》 2023年第1期91-98,共8页
This report shows how starting from classic electric circuits embodying commonly electric components we have reached semi-complicated circuits embodying the same components that analyzing the signal characteristics re... This report shows how starting from classic electric circuits embodying commonly electric components we have reached semi-complicated circuits embodying the same components that analyzing the signal characteristics requires a Computer Algebra System. Our approach distinguishes itself from the electrical engineers’ (EE) approach that relies on utilizing commercially available software. Our approach step-by-step shows how Kirchhoff’s rules are applied conducive to the needed circuit information. It is shown for the case at hand the characteristic information is a set of coupled differential equations and that with the help of Mathematica numeric solutions are sought. Our report paves the research road for unlimited creative similar circuits with any degree of complications. Occasionally, by tweaking the circuits we have addressed the “what if” scenarios widening the scope of the investigation. Justification of the accuracy of our analysis for the generalized circuits is cross-checked by arranging the components symmetrizing the circuit leading to an intuitively predictable reasonable result. Mathematica codes are embedded assisting the interested reader in producing and extending our results. 展开更多
关键词 characteristics of electric Circuits DC and AC Driven Circuits Computer Algebra System MATHEMATICA
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部