期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method 被引量:3
1
作者 林茂用 曹中丞 +3 位作者 许春耀 邱蕙 黄鹏丞 林裕城 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期661-666,共6页
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and... The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method. 展开更多
关键词 Inconel 718 alloy micro milling electrical discharge machining electrode wear material removal rate working gap Grey-Taguchi method
下载PDF
Statistical Description of Debris Particle Size Distribution in Electrical Discharge Machining 被引量:4
2
作者 JIA Zhenyuan ZHENG Xinyi WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期67-72,共6页
Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove... Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove rate, and machining stability. The study on statistical distribution of debris size contributes to the research, but it is still superficial currently. In order to obtain the distribution law of the debris particle size, laser particle size analyzer(LPSA) combined with scanning electron microscope(SEM) is used to analyze the EDM debris size. Firstly, the heating dried method is applied to obtain the debris particles. Secondly, the measuring range of LPSA is determined as 0.5–100 μm by SEM observation, and the frequency distribution histogram and the cumulative frequency distribution scattergram of debris size are obtained by using LPSA. Thirdly, according to the distribution characteristic of the frequency distribution histogram, the statistical distribution functions of lognormal, exponentially modified Gaussian(EMG), Gamma and Weibull are chosen to achieve curve fitting of the histogram. At last, the distribute law of the debris size is obtained by fitting results. Experiments with different discharge parameters are carried out on an EDM machine designed by the authors themselves, and the machining conditions are tool electrode of red-copper material, workpiece of ANSI 1045 material and working fluid of de-ionized water. The experimental results indicate that the debris sizes of all experiment sample truly obey the Weibull distribution. The obtained distribution law is significantly important for all the models established based on the debris particle size. 展开更多
关键词 electrical discharge machining DEBRIS particle measurement size distribution curve fitting
下载PDF
Parameter optimization model in electrical discharge machining process 被引量:5
3
作者 Qing GAO Qin-he ZHANG +1 位作者 Shu-peng SU Jian-hua ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第1期104-108,共5页
Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and... Electrical discharge machining (EDM) process, at present is still an experience process, wherein selected parameters are often far from the optimum, and at the same time selecting optimization parameters is costly and time consuming. In this paper, artificial neural network (ANN) and genetic algorithm (GA) are used together to establish the parameter optimization model. An ANN model which adapts Levenberg-Marquardt algorithm has been set up to represent the relationship between material removal rate (MRR) and input parameters, and GA is used to optimize parameters, so that optimization results are obtained. The model is shown to be effective, and MRR is improved using optimized machining parameters. 展开更多
关键词 electrical discharge machining (EDM) Genetic algorithm (GA) Artificial neural network (ANN) Levenberg- Marquardt algorithm
下载PDF
Surface Modification Process by Electrical Discharge Machining with Ti Powder Green Compact Electrode 被引量:4
4
作者 WANG Zhen-long 1, FANG Yu 1, WU Pei-nian 1, ZHAO Wan-sheng 1, CHENG Kai 2 (1. Dept. of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China 2. School of Engineering, Leeds Metropolitan University, UK) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期6-,共1页
This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface wi... This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft. 展开更多
关键词 electrical Discharge machining(EDM) electrical Discharge Coating(EDC) Ti powder green compact electrode surface modification
下载PDF
Micro Electrical Discharge Machining Deposition in Air for Fabrication of Micro Spiral Structures 被引量:4
5
作者 PENG Zilong CHI Guanxin WANG Zhenlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期154-160,共7页
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m... Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures. 展开更多
关键词 micro electrical discharge machining deposition micro spiral structure forming mechanism fine texture analysis
下载PDF
Experimental Research on Effects of Process Parameters on Servo Scanning 3D Micro Electrical Discharge Machining 被引量:3
6
作者 TONG Hao LI Yong HU Manhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期114-121,共8页
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a... Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM. 展开更多
关键词 micro electrical discharge machining(micro EDM) servo scanning machining 3D micro-structure process parameter
下载PDF
Micro electrical discharge machining of small hole in TC4 alloy 被引量:3
7
作者 LI Mao-sheng CHI Guan-xin +2 位作者 WANG Zhen-long WANG Yu-kui DAI Li 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期434-439,共6页
Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency a... Aiming at machining deeply small holes in TC4 alloy,a series of experiments were carried out on a self-developed multi-axis micro electrical discharge machining(micro-EDM)machine tool.To improve machining efficiency and decrease relative wear of electrode in machining deeply small hole in TC4 alloy,many factors in micro-EDM,such as polarity,electrical parameters and supplying ways of working fluid were studied.Experimental results show that positive polarity machining is far superior to negative polarity machining;it is more optimal when open-circuit voltage,pulse width and pulse interval are 130 V,5μs and 15μs respectively on the self developed multi-axis micro-EDM machine tool;when flushing method is applied in micro-EDM,the machining efficiency is higher and relative wear of electrode is smaller. 展开更多
关键词 TC4 alloy micro electrical discharge machining deeply small hole multi-axis micro-EDM machine tool
下载PDF
Electrical discharge machining of 6061 aluminium alloy 被引量:2
8
作者 A.PRAMANIK A.K.BASAK +1 位作者 M.N.ISLAM G.LITTLEFAIR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2866-2874,共9页
The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studi... The wire electrical discharge machining(EDM) of 6061 aluminium alloy in terms of material removal rate,kerf/slit width,surface finish and wear of electrode wire for different pulse on time and wire tension was studied.Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension.It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate.It seems that the higher wire tension facilitates steady machining process,which generates low wear in wire electrode and better surface finish.The surface roughness does not change notably with the variation of pulse on time.The appearance of the machined surfaces is very similar under all the machining conditions.The machined surface contains solidified molten material,splash of materials and blisters.The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input.The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side.The higher electrode wear introduces higher taper. 展开更多
关键词 wire electrical discharge machining(EDM) 6061 aluminium alloy material removal rate kerf width surface finish
下载PDF
MICRO ELECTRICAL DISCHARGE MACHINING DEPOSITION IN AIR 被引量:6
9
作者 JIN Baidong ZHAO Wansheng WANG Zhenlong CAO Guohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期622-625,共4页
A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are... A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained, As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode, material. 展开更多
关键词 electrical discharge machining(EDlVD electrical discharge deposition(EDD) Reversible machining Processing pararneters
下载PDF
Optimization of electrical discharge machining process parameters for Al6061/cenosphere composite using grey-based hybrid approach 被引量:1
10
作者 A. DEY S. DEBNATH K. M. PANDEY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期998-1010,共13页
Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMC... Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMCs limits their application.The present study focuses on the preparation of cenosphere fly ash reinforced Al6061alloys by compo casting method.X-ray diffraction analysis of the prepared AMCs exposes the presence of cenosphere particles without any formation of other intermetallic compounds.In this study,electrical discharge machining(EDM)was engaged to examine the machinability of the prepared metal matrix composite(MMCs).The measured performance characteristics for the various combinations of input process parameters were considered to be MRR,EWR and SR.Face centered central composite design(CCD)of response surface method(RSM)was employed to design the number of experimental trials required and a hybrid approach of grey-based response surface methodology(GRSM)was imposed for predicting the optimal combination of processing parameter in EDM process.Generous improvement was observed in the performance characteristics obtained by employing both the optimal setting of machining parameters.The optical3D surface profile graphs of the ED machined surface also revealed the improvement in surface quality and texture employing the optimal processing conditions proposed by hybrid GRSM approach. 展开更多
关键词 compo casting electrical discharge machining response surface method grey-based response surface methodology analysis of variance desirability analysis
下载PDF
Scale Effects and a Method for Similarity Evaluation in Micro Electrical Discharge Machining 被引量:1
11
作者 LIU Qingyu ZHANG Qinhe +3 位作者 WANG Kan ZHU Guang FU Xiuzhuo ZHANG Jianhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1193-1199,共7页
Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at th... Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM. 展开更多
关键词 electrical Discharge machining (EDM) micro EDM Scale effect Similarity theory Similarity evaluating method
下载PDF
Surface performance of workpieces processed by electrical discharge machining in gas 被引量:1
12
作者 李立青 白基成 +1 位作者 郭永丰 王振龙 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期255-259,共5页
The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed... The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric. 展开更多
关键词 electrical discharge machining in gas (dry EDM) surface performance 45 carbon steels
下载PDF
Wire electric discharge machining characteristics of titanium nickel shape memory alloy
13
作者 M.MANJAIAH S.NARENDRANATH +1 位作者 S.BASAVARAJAPPA V.N.GAITONDE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3201-3209,共9页
Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditiona... Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration. 展开更多
关键词 TiNi shape memory alloy wire electric discharge machining(WEDM) surface roughness material removal rate surface morphology
下载PDF
Modelling effect of magnetic field on material removal in dry electrical discharge machining
14
作者 Abhishek GUPTA Suhas S JOSHI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第2期79-88,共10页
One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to ... One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values. 展开更多
关键词 electrical discharge machining dry EDM plasma confinement magnetic field
下载PDF
A Study on Modelling Surface Finish in Electrical Discharge Machining Tablet Shape Punches Using Response Surface Methodology
15
作者 Le Xuan Hung Tran Thanh Hoang Vu Ngoc Pi 《Journal of Environmental Science and Engineering(B)》 2017年第7期387-390,共4页
This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based o... This paper introduces a study on modelling surface finish in EDM (Electrical Discharge Machining) of tablet shape punches when using copper as electrode material. In this study, 27 experiments were performed based on BBD (Box-Behnken Design) and the work-piece material was 9CrSi steel. The input process parameters were the current, the pulse on time, the pulse off time and the voltage. The effects of the input parameters on the surface finish were evaluated by analysing variance. Besides, from the results of the experiments, a regression equation for determining the surface roughness is introduced. Also, the optimum input parameter values were found in order to get the minimum surface roughness. 展开更多
关键词 EDM electrical Discharge machining EDM sinking surface roughness RSM (Response Surface Methodology) BBD(Box-Behken Design).
下载PDF
Material Removal Rate Prediction of Electrical Discharge Machining Process Using Artificial Neural Network
16
作者 Azli Yahya Trias Andromeda Ameruddin Baharom Arif Abd Rahim Nazriah Mahmud 《Journal of Mechanics Engineering and Automation》 2011年第4期298-302,共5页
This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data colle... This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result. 展开更多
关键词 electrical discharge machining artificial neural network material removal rate.
下载PDF
Review on non-conventional machining of shape memory alloys 被引量:8
17
作者 M.MANJAIAH S.NARENDRANATH S.BASAVARAJAPPA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期12-21,共10页
Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corro... Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions. 展开更多
关键词 non-conventional machining electrical discharge machining wire EDM shape memory alloys
下载PDF
CUTTING REGULARITY AND DISCHARGE CHARACTERISTICS BY USING COMPOSITE COOLING LIQUID IN WIRE CUT ELECTRICAL DISCHARGE MACHINE WITH HIGH WIRE TRAVELING SPEED 被引量:11
18
作者 LIU Zhidong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期41-45,共5页
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte... The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid. 展开更多
关键词 Wire cut electrical discharge machine with high wire traveling speed Composite cooling liquid Discharge characteristic Cutting regularity
下载PDF
Electrical discharge and arc milling with automatic tracking of optimal flushing direction:A novel high-efficiency compound machining method
19
作者 Xinlei WU Yonghong LIU +4 位作者 Pengxin ZHANG Liang QI Dege LI Chi MA Renjie JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期351-364,共14页
The arc milling method has the advantages of high machining efficiency and low cost and is independent of the strength and hardness of machined materials.However,frequent electrode back-offs and the risk of workpiece ... The arc milling method has the advantages of high machining efficiency and low cost and is independent of the strength and hardness of machined materials.However,frequent electrode back-offs and the risk of workpiece burning may occur if erosion products are not removed promptly.In this study,it was found that the flushing method of the working medium had a significant impact on the machining performance of arc milling.Based on this,a novel highefficiency compound machining method of electrical discharge and arc milling with automatic tracking of the optimal flushing direction was proposed.An automatic tracking optimizer for external working medium injection was designed to determine the optimal external flushing direction according to the feed direction.The influence of flushing methods,working mediums,and machining parameters on the machining efficiency,tool electrode wear rate,machining error,and surface integrity of titanium alloys were investigated.The results indicated that better machining performance and environmental friendliness were achieved using the compound flushing method of outer compressed air and inner deionized water.Additionally,the automatic tracking flushing method in the opposite direction of the feed direction showed superior results compared to other directions.The material removal rate with the opposite direction injection could be increased up to 1.62 times that of the same direction,and the relative electrode wear rate could be reduced by 14.76%.This novel method has broad application prospects for machining parts with difficult-to-cut materials in aerospace and military industries. 展开更多
关键词 Arc milling DIelectric Difficult-to-cut materials electric discharge machining EROSION Material removal rate
原文传递
WEDM oriented micro gear design and mesh simulation
20
作者 安鲁陵 汪炜 +1 位作者 周来水 朱如鹏 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期78-81,共4页
For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Som... For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Some constraint conditions on gear parameters are abnegated, which makes micro gear design more flexible. Based on gear mesh theory, the algorithm of generating gear tooth profiles is studied, which includes involute and non-involute curve segments. The phenomena of tooth profile interferences during gear mesh are analyzed, and a gear mesh simulation algorithm is designed. Based on ACIS, the WEDM oriented software for the design and mesh simulation of micro gears is developed, by which the modeling, mesh simulation and interference check can be implemented. An experiment is carried out to design and manufacture a pair of micro involute gears, and the proposed method is proved feasible. 展开更多
关键词 wire electrical discharge machining micro gear tooth profile MODELING mesh simulation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部