The electric pulse modification (EP, EPM) of liquid metal is a novel method for grain refinement. The structure of EP-modified Al-5%Cu melt was characterized by high-temperature X-ray diffractometry. The results sho...The electric pulse modification (EP, EPM) of liquid metal is a novel method for grain refinement. The structure of EP-modified Al-5%Cu melt was characterized by high-temperature X-ray diffractometry. The results show that the Cu-containing Al clusters remarkably increase in the EP-modified melt, furthermore, these clusters in that case tend to contract due to the decrease of relevant atomic radius and the co-ordination number. This kind of liquid-phase structure leads to a more homogeneous Cu-rich phase distribution in the final solidification structure. Differential scanning calorimetry (DSC) tests indicate that the solidification super-cooling degree of the EP-modified liquid phase is 2.36 times that of the unmodified. These facts suggest that the atom cluster changes in EP-modified Al-5%Cu melt would disagree with that by EPM model previously proposed in liquid pure metal.展开更多
The heredity of aluminum melt under the action of pulse electric field was investigated by means of the remelt experiment. A new hereditary criterion under this condition was proposed; in the meantime, the differentia...The heredity of aluminum melt under the action of pulse electric field was investigated by means of the remelt experiment. A new hereditary criterion under this condition was proposed; in the meantime, the differential transferability of genetic carrier in activated melt among filial generations was validated with the aid of DSC.展开更多
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
Heredity of high pure aluminum melts under different pulse electric field was investigated by means of repetitious remelt experiment. The results indicate that the genetic coefficient by measurement of grain size of c...Heredity of high pure aluminum melts under different pulse electric field was investigated by means of repetitious remelt experiment. The results indicate that the genetic coefficient by measurement of grain size of cast structure has a close relation with pulse voltage. Moreover, the hereditary law accords with the function of In = 1+ e^-an+β. The stability of genetic carrier (cluster) comprises in the competition between repetitious cooling and heating impulse and the effect of electric pulse modification.展开更多
Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in diff...Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in different superheated melts. The results indicate that the grain refining effect of a given pulse electric field holds an optimal temperature range, moreover, a lower or higher superheated temperature will both disadvantage the improvements of casting structure. It essentially lies in the cooperative action between the distorted absorption of clusters and the activated capability of atoms in the aluminum melt.展开更多
This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface wi...This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.展开更多
Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of...Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability.展开更多
Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coa...Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coating(EDC)is an emerging surface modification technology to produce such hard coatings by using electrical discharges to coat a layer of material on workpiece surface to modify and enhance the surface characteristics or create new surface functions.This paper presents a comprehensive overview of EDC technologies for various materials,and summarises the types and key parameters of EDC processes as well as the characteristics of resulting coatings.It provides a systematic summary of the fundamentals and key features of the EDC processes,as well as its applications and future trends.展开更多
The remarkable heredity of liquid aluminum modified by electric pulse (EP, EPM) has been uncovered. For better understanding from all aspects on the hereditary properties, the present research deals with the heredity ...The remarkable heredity of liquid aluminum modified by electric pulse (EP, EPM) has been uncovered. For better understanding from all aspects on the hereditary properties, the present research deals with the heredity destruction and the secondary EPM procedure. It is shown that the secondary EPM is capable of preventing the heredity reduction of EP-modified liquid aluminum, and that the final refining effect has a close relationship with technique parameters of the secondary EPM. Furthermore, at a certain superheated temperature depending on the initial EPM technique parameters, the heredity relationship of EP-modified liquid aluminum can be cut off during remelting. High temperature X-ray diffraction combining with the DSC tests also indicates that the EP-induced structure changes have almost disappeared at an elevated remelting temperature.展开更多
Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can...Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can obtain a good field grading effect,but it is accompanied by the deterioration of mechanical properties.Compounding SiC with different shapes can solve this contradiction.By incorporating one-dimensional SiC whiskers(SiCw)to synergize with granular SiCp,SiC/SR FGM with better field-dependent conductivity,mechanical properties and thermal conductivity than large-size SiCp and large volume fraction filling case can be obtained by using smaller size SiCp and lower filling contents.The simulations of 500 kv line insulators show that the modified SiC/SR FGM can reduce the maximum field strength along the insulator surface and at sheath-core rod interfaces by 55%and 71.4%,respectively.The combined application of FGM and grading ring can achieve a complementary effect.Using FGM to partially replace the role of the grading rings,the field strength indicators can still meet the operational requirements after the tube radius and shielding depth of the grading rings at both ends are reduced by 36.2%and 40%separately,which is a benefit to alleviating the problems of high weight and large volume faced by traditional field grading methods.展开更多
The integration of nanowires onto electrode surfaces marks a significant advancement over traditional electrode materials,conferring upon nanowire-modified electrodes a vast array of applications within electrochemica...The integration of nanowires onto electrode surfaces marks a significant advancement over traditional electrode materials,conferring upon nanowire-modified electrodes a vast array of applications within electrochemical and electrophysical domains.The nanowires used for electrode modification can be catalogized into two distinct types:anchored nanowires and free-standing nanowires.A critical advantage of anchored nanowires lies in their enhanced electrical connectivity with the substrate,which reduces electrode resistance and facilitates charge transport.Furthermore,the anchorage of nanowires onto electrodes provides additional mechanical support,bolstering the structural stability of the nanowire assembly.Here,we review the development of anchored nanowires designed for applications in energy storage,electrocatalysis,and electric field treatment(EFT)over the past decade.We focus on the synthesis and modification strategies employed for anchored nanowires,culminating in the evaluation of these fabrication and enhancement techniques.Through this analysis,we aim to furnish comprehensive insights into the preparation of anchored nanowires,guiding the selection of appropriate fabrication processes and subsequent functional modifications.展开更多
The metallographic structure of LM-29 aluminum-silicon alloy modified by electric pulse treatment has been investigated and compared with those untreated.The solidification structure of LM-29 alloy has been analyzed b...The metallographic structure of LM-29 aluminum-silicon alloy modified by electric pulse treatment has been investigated and compared with those untreated.The solidification structure of LM-29 alloy has been analyzed by means of M1AP3 Quantimet image processing and analysis system,and then the solidification process has been analyzed by means of differential scanning calorimetry(DSC).The results indicate that the primary silicon phase was refined remarkably by electric pulse while the tensile strength and elongation properties increased accordingly.Electric pulse treatment can also increase the binding power between silicon clusters and alloy melt matrix,as a result,the precipitation of primary silicon phase is suppressed to meet the demand of supercooling degree for nucleating,correspondingly.The electric pulse modification has great influence on the size of silicon atomic cluster as well as its distribution in the melt,subsequently,leads to the refinement of solidification structure.展开更多
The electrical resistivity and viscosity of liquid hypoeutectic Al 7%Si and hypereutectic Al 18%Si alloys, and the influences of trace strontium and phosphorus on them were investigated. The trace additions of the t...The electrical resistivity and viscosity of liquid hypoeutectic Al 7%Si and hypereutectic Al 18%Si alloys, and the influences of trace strontium and phosphorus on them were investigated. The trace additions of the two elements increase the electrical resistivity. At the precipitation temperatures of primary phase, the electrical resistivity exhibits a discontinuity for all experimental Al Si alloys. In the discontinuity the electrical resistivity, respectively, decreases and increases abruptly for Al 7%Si alloys and Al 18%Si alloys. Phosphorus and strontium both have some effects on the discontinuity temperature and the jump value of electrical resistivity of Al 18%Si alloys, but strontium hardly has effect on them in Al 7%Si alloys. The trace additions of strontium and phosphorus increase the viscosity of the experimental alloy.展开更多
The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into c...The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into carbon for the formationof a self-lubricated carbide layer on the aluminum alloy surface during EDA process. Transmission electron microscopy (TEM)image found that the self-lubricated carbide layer was a multi-phase material with carbides and graphite. As a result, theEDA-modified aluminum alloy had a negligible wear rate of ~2?10?4 mg/m (c. f. ~1.1?10?2 mg/m for aluminum alloy substrate).Notably, a new characteristic was found that the EDA-processed carbide layer was a soft magnet, which improved theelectromagnetic interference (EMI) shielding performance of the alloy.展开更多
The method of electrical discharge coating with TiC ceramic layer in ordinary electrical discharge machining(EDM) tool was studied systematically. Through the metallography, X-ray diffraction, sector scanning research...The method of electrical discharge coating with TiC ceramic layer in ordinary electrical discharge machining(EDM) tool was studied systematically. Through the metallography, X-ray diffraction, sector scanning research and wear test, the characteristics of the ceramic layer were studied, and the effect of the discharge parameters on the quality and the thickness of the coating was also discussed. The results show that this method is a very potential surface modification method. Comparing with other surface peeling technologies, that coating layer thickness is more than 20μm, the hardness is increased by 2-3 times, the wearing resistance is increased by 5 times and the product life is increased by 3-5 times.展开更多
A large-area improved dielectric barrier glow discharge tunnel has been developed for modifying the surface of polyester film at atmospheric pressure with argon and oxygen gas mixtures. The electrical properties of th...A large-area improved dielectric barrier glow discharge tunnel has been developed for modifying the surface of polyester film at atmospheric pressure with argon and oxygen gas mixtures. The electrical properties of the glow discharge tunnel were studied by simultaneous measurement of the voltage and current. In addition, the effect of the glow discharge tunnel treatment on the surface of polyester film were studied. The resultant modifications of the surface properties of the treated samples were investigated through scanning probe microscopy and contact angle measurement.展开更多
基金Project(51074087)supported by the National Natural Science Foundation of ChinaProject(201102088)supported by the Natural Science Foundation of Liaoning Province,China+1 种基金Project(LJQ2011065)supported by Liaoning Excellent Talents in University,ChinaProject(2010921096)supported by Liaoning Baiqianwan Talents Program,China
文摘The electric pulse modification (EP, EPM) of liquid metal is a novel method for grain refinement. The structure of EP-modified Al-5%Cu melt was characterized by high-temperature X-ray diffractometry. The results show that the Cu-containing Al clusters remarkably increase in the EP-modified melt, furthermore, these clusters in that case tend to contract due to the decrease of relevant atomic radius and the co-ordination number. This kind of liquid-phase structure leads to a more homogeneous Cu-rich phase distribution in the final solidification structure. Differential scanning calorimetry (DSC) tests indicate that the solidification super-cooling degree of the EP-modified liquid phase is 2.36 times that of the unmodified. These facts suggest that the atom cluster changes in EP-modified Al-5%Cu melt would disagree with that by EPM model previously proposed in liquid pure metal.
基金Item Sponsored by National Natural Science Foundation of China(50174028and50674054)
文摘The heredity of aluminum melt under the action of pulse electric field was investigated by means of the remelt experiment. A new hereditary criterion under this condition was proposed; in the meantime, the differential transferability of genetic carrier in activated melt among filial generations was validated with the aid of DSC.
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金Item Sponsored by National Natural Science Foundation of China (50174028 ,50674054)
文摘Heredity of high pure aluminum melts under different pulse electric field was investigated by means of repetitious remelt experiment. The results indicate that the genetic coefficient by measurement of grain size of cast structure has a close relation with pulse voltage. Moreover, the hereditary law accords with the function of In = 1+ e^-an+β. The stability of genetic carrier (cluster) comprises in the competition between repetitious cooling and heating impulse and the effect of electric pulse modification.
基金This work was financially supported by the National Natural Science Foundation of China (No.50174028).
文摘Electric pulse modification (EPM) is a novel technique that reduces grain size by altering the structure of a melt. It was investigated that the response of the casting structure of high pure aluminum to EPM in different superheated melts. The results indicate that the grain refining effect of a given pulse electric field holds an optimal temperature range, moreover, a lower or higher superheated temperature will both disadvantage the improvements of casting structure. It essentially lies in the cooperative action between the distorted absorption of clusters and the activated capability of atoms in the aluminum melt.
文摘This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21806129,51872238,51407134,and 51521065)the China Postdoctoral Science Foundation(Grant No.2016M590619)+3 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2016EEQ28)the State Key Laboratory of Electrical Insulation and Power Equipment,China(Grant No.EIPE14107)the Fundamental Research Funds for the Central Universities,China(Grant No.3102018zy045)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2017JQ5116)
文摘Epoxy-based composites containing montmorillonite(MMT)modified by silylation reaction withγ-aminopropyltriethoxysilane(γ-APTES)and 3-(glycidyloxypropyl)trimethoxysilane(GPTMS)are successfully prepared.The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated.Compared with the pure epoxy resin,the epoxy/MMT composite,whether MMT is surface-treated or not,shows low dielectric permittivity,low dielectric loss,and enhanced dielectric strength.The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability.Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles,but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin.Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites.What is more,the MMT modified with GPTMS rather thanγ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices,thus resulting in lower dielectric loss,lower electric conductivity,higher breakdown strength,lower thermal conductivity,and higher thermal stability.
基金Pay Jun Liew and Ching Yee Yap acknowledge the supportsfrom Universiti Teknikal Malaysia Melaka (UTeM) for thetechnical and financial supports through the grant PJP/2018/FKP(6A)/S01587.
文摘Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coating(EDC)is an emerging surface modification technology to produce such hard coatings by using electrical discharges to coat a layer of material on workpiece surface to modify and enhance the surface characteristics or create new surface functions.This paper presents a comprehensive overview of EDC technologies for various materials,and summarises the types and key parameters of EDC processes as well as the characteristics of resulting coatings.It provides a systematic summary of the fundamentals and key features of the EDC processes,as well as its applications and future trends.
基金supported financially by the National Natural Science Foundation of China(No.51074087)the Liaoning BaiQianWan Talents Program(No.2010921096)
文摘The remarkable heredity of liquid aluminum modified by electric pulse (EP, EPM) has been uncovered. For better understanding from all aspects on the hereditary properties, the present research deals with the heredity destruction and the secondary EPM procedure. It is shown that the secondary EPM is capable of preventing the heredity reduction of EP-modified liquid aluminum, and that the final refining effect has a close relationship with technique parameters of the secondary EPM. Furthermore, at a certain superheated temperature depending on the initial EPM technique parameters, the heredity relationship of EP-modified liquid aluminum can be cut off during remelting. High temperature X-ray diffraction combining with the DSC tests also indicates that the EP-induced structure changes have almost disappeared at an elevated remelting temperature.
基金supported by Science and Technology Project of State Grid Corporation of China(7000-202158440A-0-0-00)。
文摘Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can obtain a good field grading effect,but it is accompanied by the deterioration of mechanical properties.Compounding SiC with different shapes can solve this contradiction.By incorporating one-dimensional SiC whiskers(SiCw)to synergize with granular SiCp,SiC/SR FGM with better field-dependent conductivity,mechanical properties and thermal conductivity than large-size SiCp and large volume fraction filling case can be obtained by using smaller size SiCp and lower filling contents.The simulations of 500 kv line insulators show that the modified SiC/SR FGM can reduce the maximum field strength along the insulator surface and at sheath-core rod interfaces by 55%and 71.4%,respectively.The combined application of FGM and grading ring can achieve a complementary effect.Using FGM to partially replace the role of the grading rings,the field strength indicators can still meet the operational requirements after the tube radius and shielding depth of the grading rings at both ends are reduced by 36.2%and 40%separately,which is a benefit to alleviating the problems of high weight and large volume faced by traditional field grading methods.
基金the National Science Foundation via Grant CBET 2203162.
文摘The integration of nanowires onto electrode surfaces marks a significant advancement over traditional electrode materials,conferring upon nanowire-modified electrodes a vast array of applications within electrochemical and electrophysical domains.The nanowires used for electrode modification can be catalogized into two distinct types:anchored nanowires and free-standing nanowires.A critical advantage of anchored nanowires lies in their enhanced electrical connectivity with the substrate,which reduces electrode resistance and facilitates charge transport.Furthermore,the anchorage of nanowires onto electrodes provides additional mechanical support,bolstering the structural stability of the nanowire assembly.Here,we review the development of anchored nanowires designed for applications in energy storage,electrocatalysis,and electric field treatment(EFT)over the past decade.We focus on the synthesis and modification strategies employed for anchored nanowires,culminating in the evaluation of these fabrication and enhancement techniques.Through this analysis,we aim to furnish comprehensive insights into the preparation of anchored nanowires,guiding the selection of appropriate fabrication processes and subsequent functional modifications.
基金supported by the National Natural Science Foundation of China (No. 50674054)the Doctorate Foundation of Science and Technology Department,Liaoning Province (20081097)
文摘The metallographic structure of LM-29 aluminum-silicon alloy modified by electric pulse treatment has been investigated and compared with those untreated.The solidification structure of LM-29 alloy has been analyzed by means of M1AP3 Quantimet image processing and analysis system,and then the solidification process has been analyzed by means of differential scanning calorimetry(DSC).The results indicate that the primary silicon phase was refined remarkably by electric pulse while the tensile strength and elongation properties increased accordingly.Electric pulse treatment can also increase the binding power between silicon clusters and alloy melt matrix,as a result,the precipitation of primary silicon phase is suppressed to meet the demand of supercooling degree for nucleating,correspondingly.The electric pulse modification has great influence on the size of silicon atomic cluster as well as its distribution in the melt,subsequently,leads to the refinement of solidification structure.
文摘The electrical resistivity and viscosity of liquid hypoeutectic Al 7%Si and hypereutectic Al 18%Si alloys, and the influences of trace strontium and phosphorus on them were investigated. The trace additions of the two elements increase the electrical resistivity. At the precipitation temperatures of primary phase, the electrical resistivity exhibits a discontinuity for all experimental Al Si alloys. In the discontinuity the electrical resistivity, respectively, decreases and increases abruptly for Al 7%Si alloys and Al 18%Si alloys. Phosphorus and strontium both have some effects on the discontinuity temperature and the jump value of electrical resistivity of Al 18%Si alloys, but strontium hardly has effect on them in Al 7%Si alloys. The trace additions of strontium and phosphorus increase the viscosity of the experimental alloy.
文摘The surface modification on the AA6082 Al?Mg?Si aging-hardenable aluminum alloy was investigated by electricaldischarge alloying (EDA) process. Kerosene, used as a dielectric fluid, was pyrolytically decomposed into carbon for the formationof a self-lubricated carbide layer on the aluminum alloy surface during EDA process. Transmission electron microscopy (TEM)image found that the self-lubricated carbide layer was a multi-phase material with carbides and graphite. As a result, theEDA-modified aluminum alloy had a negligible wear rate of ~2?10?4 mg/m (c. f. ~1.1?10?2 mg/m for aluminum alloy substrate).Notably, a new characteristic was found that the EDA-processed carbide layer was a soft magnet, which improved theelectromagnetic interference (EMI) shielding performance of the alloy.
文摘The method of electrical discharge coating with TiC ceramic layer in ordinary electrical discharge machining(EDM) tool was studied systematically. Through the metallography, X-ray diffraction, sector scanning research and wear test, the characteristics of the ceramic layer were studied, and the effect of the discharge parameters on the quality and the thickness of the coating was also discussed. The results show that this method is a very potential surface modification method. Comparing with other surface peeling technologies, that coating layer thickness is more than 20μm, the hardness is increased by 2-3 times, the wearing resistance is increased by 5 times and the product life is increased by 3-5 times.
文摘A large-area improved dielectric barrier glow discharge tunnel has been developed for modifying the surface of polyester film at atmospheric pressure with argon and oxygen gas mixtures. The electrical properties of the glow discharge tunnel were studied by simultaneous measurement of the voltage and current. In addition, the effect of the glow discharge tunnel treatment on the surface of polyester film were studied. The resultant modifications of the surface properties of the treated samples were investigated through scanning probe microscopy and contact angle measurement.