A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential tra...A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential train, a hydraulic transmission system consisted of variable displacement pump and fixed displacement motor and a multi-gear fixed step radio transmission. Based on the analysis of types of hydrostatic mechanical transmission (HMT) and styles of hydraulic transmission, the general drive scheme for HMCVT is obtained. The method of selecting mechanical parameters and hydraulic units is explained, and the stepless speed regulation characteristic of HMCVT is analyzed. This paper also specializes the calculating method of transmission efficiency. It shows that tractors assembled with HMCVT can obtain a continuously variable speed and achieve high drive efficiency.展开更多
According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric trans...According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric transmission based on brushless DC motor. A fuzzy controller is designed with continuous fuzzy variables and the simulation module of the aft power chain is proved by test. The fuzzy controller controls the process of continuously variable transmission steadily and the acceleration of vehicle is quick according to simulation results. The elementary performance exhibited in the simulation is a foundation for the further study of the electric transmission track vehicle.展开更多
This paper describes the CVT (continuously variable transmission). Generally, CVTs are classified as belt-type or toroidal CVTs, and each CVT is basically composed of two parts such as the V-belt and pulley, or fric...This paper describes the CVT (continuously variable transmission). Generally, CVTs are classified as belt-type or toroidal CVTs, and each CVT is basically composed of two parts such as the V-belt and pulley, or friction wheels. In the belt-type CVT, the pulley is driven by a belt placed between two (left and right) circle boards, while in the toroidal CVT, two rollers rotate under the condition being pushed by strong compression power. Since these conventional CVTs use friction force, their energy transfer efficiency might be inferior. Furthermore, although these CVTs require precise structures and processing, they make noise, and are not durable. Consequently, we propose a new structural CVT in this paper.展开更多
基金Fund of Henan Innovation Project for University Prominent Research Talents (2002KYCX010) Youth Scientific Research Foundation of Henan University of Science and Technology (2004QN030)
文摘A new type continuous variable transmission device, a hydro-mechanical continuously variable transmission (HMCVT) for agricultural tractors is developed, which is composed of a single planetary gear differential train, a hydraulic transmission system consisted of variable displacement pump and fixed displacement motor and a multi-gear fixed step radio transmission. Based on the analysis of types of hydrostatic mechanical transmission (HMT) and styles of hydraulic transmission, the general drive scheme for HMCVT is obtained. The method of selecting mechanical parameters and hydraulic units is explained, and the stepless speed regulation characteristic of HMCVT is analyzed. This paper also specializes the calculating method of transmission efficiency. It shows that tractors assembled with HMCVT can obtain a continuously variable speed and achieve high drive efficiency.
文摘According to the study of electric transmission, the concept of the fore and the aft power chain is presented. The control method of continuously variable transmission is established in the aft chain of electric transmission based on brushless DC motor. A fuzzy controller is designed with continuous fuzzy variables and the simulation module of the aft power chain is proved by test. The fuzzy controller controls the process of continuously variable transmission steadily and the acceleration of vehicle is quick according to simulation results. The elementary performance exhibited in the simulation is a foundation for the further study of the electric transmission track vehicle.
文摘This paper describes the CVT (continuously variable transmission). Generally, CVTs are classified as belt-type or toroidal CVTs, and each CVT is basically composed of two parts such as the V-belt and pulley, or friction wheels. In the belt-type CVT, the pulley is driven by a belt placed between two (left and right) circle boards, while in the toroidal CVT, two rollers rotate under the condition being pushed by strong compression power. Since these conventional CVTs use friction force, their energy transfer efficiency might be inferior. Furthermore, although these CVTs require precise structures and processing, they make noise, and are not durable. Consequently, we propose a new structural CVT in this paper.