The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road ...The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system's robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.展开更多
Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric pow...Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.展开更多
针对电动助力转向(Electric power steering,EPS)系统存在系统模型、干扰等不确定性,以及对系统动态特性的要求,提出EPS系统混合H2/H∞控制器。在EPS系统及整车2自由度数学模型基础上,以驾驶员获得良好的转向路感、系统具有卓越的鲁棒...针对电动助力转向(Electric power steering,EPS)系统存在系统模型、干扰等不确定性,以及对系统动态特性的要求,提出EPS系统混合H2/H∞控制器。在EPS系统及整车2自由度数学模型基础上,以驾驶员获得良好的转向路感、系统具有卓越的鲁棒性和较小的力矩波动为控制目标,构建系统的状态空间方程和增广被控对象矩阵,运用H∞方法极小化系统中各种干扰对被控输出的影响,并在此基础之上应用H2方法对系统进行优化。EPS系统路感仿真结果表明,基于混合H2/H∞控制的EPS系统,综合了H2控制和H∞控制的优点,具有较好的鲁棒性能和鲁棒稳定性,可有效抑制路面随机激励、转矩传感器量测、模型参数不确定等所引起的各种干扰和噪声,使驾驶员获得满意的路感。展开更多
文章以前轮转向叉车为研究对象,在对电动叉车电动助力转向(electric power steering,EPS)系统进行动力学分析和建立整车二自由度模型的基础上,提出EPS系统鲁棒H∞控制器,并运用遗传算法对控制器的加权函数参数进行优化,使驾驶员获得满...文章以前轮转向叉车为研究对象,在对电动叉车电动助力转向(electric power steering,EPS)系统进行动力学分析和建立整车二自由度模型的基础上,提出EPS系统鲁棒H∞控制器,并运用遗传算法对控制器的加权函数参数进行优化,使驾驶员获得满意的路感,系统的鲁棒性、行驶安全性得到提高。根据TFC20叉车的实际数据,进行Matlab在不同工况、不同控制方法下的对比仿真实验,从而验证了运用遗传算法优化的鲁棒控制器可以更好地给叉车提供可跟随的电机助力,确保系统的操作轻便性和稳定性。展开更多
电动助力转向(Electric Power Steering,EPS)系统作为一种机械传动机构,受路面扰动和传感器噪声的影响比较大,直接影响到EPS系统的转向路感。将EPS系统模型与线性二自由度整车模型相结合,建立EPS系统控制模型,并给出助力控制的目标函数...电动助力转向(Electric Power Steering,EPS)系统作为一种机械传动机构,受路面扰动和传感器噪声的影响比较大,直接影响到EPS系统的转向路感。将EPS系统模型与线性二自由度整车模型相结合,建立EPS系统控制模型,并给出助力控制的目标函数。根据EPS系统的频率分布,选取两个加权函数。通过转向盘把持力矩的幅频、相频特性及单位阶跃输入响应仿真计算,研究不同加权策略时助力控制对转向路感的影响。仿真结果可知,两个加权函数共同作用可以进一步改善EPS系统转向路感。展开更多
基金supported by National Natural Science Foundation of China (Grant No. 51005115, No. 51005248)Science Fund of State Key Laboratory of Automotive Safety and Energy of China (Grant No. KF11201)
文摘The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed, and vehicle dynamic model of the system is established. Due to the existence of system model uncertainty, disturbance signals, sensor noises and the demand of system dynamic performance, the indexes of robust performance and road feeling for drivers are defined as the appraisal control objectives. The H∞ method is introduced to design the H∞ controller, and the H2 method is applied to optimize the H∞ controller, thus the mixed H2/H∞ controller is designed. The response of EPS system to the motor current command with amplitude of 20 A, the road disturbance with amplitude of 500 N and the sensor random noise with the amplitude of 1 A is simulated. The simulation results show that the recirculating ball-type EPS system with the mixed H2/H∞ controller can attenuate the random noises and disturbances and track the boost curve well, so the mixed H2/H∞ controller can improve the system's robust performance and dynamic performance. For the purpose of verifying the performance of the designed control strategy, the motor current tracking performance ground tests are conducted with step response input of the steering wheel, double-lane steering test and lemniscate steering test, respectively. The tests show that the mixed H2/H∞ controller for the recirculating ball-type EPS system of pure electric bus is feasible. The designed controller can solve the robust performance and robust stability of the system, thus improve the tracking performance of the EPS system and provide satisfied road feeling for the drivers.
基金Foundation item: Projects(51005115, 51205191) supported by the National Natural Science Foundation of China Project(2012-NELEV-03) supported by the Research Foundation of National Engineering Laboratory for Electric Vehicles, China+2 种基金 Project(kfjj 120105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University, China Project supported by the Funds from the Postgraduate Creative Base in Nanjing University of Areonautics and Astronautics, China Project supported by the Fundamental Research Funds for the Central Universities, China
文摘Based on the traditional active steering system, a novel active steering system integrated with electric power steering function was introduced, which can achieve the functions of both active steering and electric power steering. In view of the interference from road random signal and sensor noise in the novel active steering system, the H∞ control model of the novel active steering system was built. With satisfying steering feel, good robust performance and steering stability being the control objectives, the H∞ controller for the novel active front steering (AFS) system was designed. The simulation results show that the novel AFS system with H∞ control strategy can attenuate the road interference quickly, and there is no resonance peak in the bode diagram. It can make the driver obtain more useful information in the low frequency range, and attenuate the road interference better in the high frequency range, thus the driver can get more satisfying road feeling. Therefore, the designed H∞ controller can synthesize the advantages of both robust performance and robust stability, and has certain contribution to the design of novel AFS system.
文摘针对电动助力转向(Electric power steering,EPS)系统存在系统模型、干扰等不确定性,以及对系统动态特性的要求,提出EPS系统混合H2/H∞控制器。在EPS系统及整车2自由度数学模型基础上,以驾驶员获得良好的转向路感、系统具有卓越的鲁棒性和较小的力矩波动为控制目标,构建系统的状态空间方程和增广被控对象矩阵,运用H∞方法极小化系统中各种干扰对被控输出的影响,并在此基础之上应用H2方法对系统进行优化。EPS系统路感仿真结果表明,基于混合H2/H∞控制的EPS系统,综合了H2控制和H∞控制的优点,具有较好的鲁棒性能和鲁棒稳定性,可有效抑制路面随机激励、转矩传感器量测、模型参数不确定等所引起的各种干扰和噪声,使驾驶员获得满意的路感。
文摘文章以前轮转向叉车为研究对象,在对电动叉车电动助力转向(electric power steering,EPS)系统进行动力学分析和建立整车二自由度模型的基础上,提出EPS系统鲁棒H∞控制器,并运用遗传算法对控制器的加权函数参数进行优化,使驾驶员获得满意的路感,系统的鲁棒性、行驶安全性得到提高。根据TFC20叉车的实际数据,进行Matlab在不同工况、不同控制方法下的对比仿真实验,从而验证了运用遗传算法优化的鲁棒控制器可以更好地给叉车提供可跟随的电机助力,确保系统的操作轻便性和稳定性。
文摘电动助力转向(Electric Power Steering,EPS)系统作为一种机械传动机构,受路面扰动和传感器噪声的影响比较大,直接影响到EPS系统的转向路感。将EPS系统模型与线性二自由度整车模型相结合,建立EPS系统控制模型,并给出助力控制的目标函数。根据EPS系统的频率分布,选取两个加权函数。通过转向盘把持力矩的幅频、相频特性及单位阶跃输入响应仿真计算,研究不同加权策略时助力控制对转向路感的影响。仿真结果可知,两个加权函数共同作用可以进一步改善EPS系统转向路感。