Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of ...Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of all-electric subsea technology instead of hydraulic technology is growing and will be the future of subsea systems due to the former’s environmental and functional advantages and reduced costs.The benefits of all-electric subsea systems are health,safety,and environment(HSE)and improved reliability,flexibility,and functionality compared with traditional hydraulic-electrical systems.Existing electrohydraulic technology for a typical subsea system,hydraulic and electric actuators,and subsea manifold valves including valve types and selection philosophy have been reviewed in this paper.Some major worldwide oil companies such as Equinor and Schlumberger have successful experiences with subsea electric actuators.Considering the benefits of all-electric technology especially in terms of cost and HSE,as well as successful experiences of two major oil companies,further research in this area is warranted.One of the gaps in existing reviewed literature is the effect of using all-electric actuators for manifold valves.Thus,three main questions related to electric actuator selection,requirement of safety integrity level(SIL),and effect of using electric actuators on manifold valve selection have been addressed and answered.Forty hydraulic actuated manifold valves from nine past subsea projects in different parts of the world,mainly Africa and Australia,have been selected for the analysis of all-electric actuators.Results show that 93%of the valves require spring-return electric actuators,whereas 7%can be operated with conventional electric actuators without any spring.The manifold valves do not require SIL certification because they are not connected to an emergency shut down system.Introducing the electric actuators to the manifold valve will not change the valve selection philosophy.展开更多
Objective: To present a case of electrical storm (ES) in a female patient with rheumatic valve disease. Methods: A female patient with severe rheumatic valve disease suffered an unexpected ES. She received more th...Objective: To present a case of electrical storm (ES) in a female patient with rheumatic valve disease. Methods: A female patient with severe rheumatic valve disease suffered an unexpected ES. She received more than 50 electrical shocks for repeated cardiac arrests due to ES over 16 hours. Then she received beta-blocking agent treatment and had an operation of double valves replacement. Results: ES was suppressed by sympathetic blockade with beta-receptor blocker and finally disappeared after the double pathological valves had been replaced. Conclusion: Increased sympathetic activity plays an important role in the genesis of electrical storm and sympathetic blockade may effectively suppress ES. However, the most important thing in the treatment of ES is to identify and eliminate the underlying cause of ES.展开更多
Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: appr...Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: approximate 25 times, the accuracy of DC output voltage: ±5%, manual control and automatic control.展开更多
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction an...BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity.展开更多
Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the li...Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive( VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting,the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation( FFT) was carried out on the pressure signals to convert into frequency domain.From the spectra of pressure pulsation signals,the characteristics of pressure pulsation are obtained for each stage and for various speed settings which were then used to understand its variation with speed and stages.展开更多
特高压直流换流阀的电磁场和电磁兼容性是其研制过程中的关键问题,国内外学者对此进行了系统研究。中国电力科学研究院成功研制出中国首个具有完全自主知识产权的800 kV/4 750 A特高压直流(ultra high voltage directcurrent,UHVDC)...特高压直流换流阀的电磁场和电磁兼容性是其研制过程中的关键问题,国内外学者对此进行了系统研究。中国电力科学研究院成功研制出中国首个具有完全自主知识产权的800 kV/4 750 A特高压直流(ultra high voltage directcurrent,UHVDC)换流阀。针对电磁场和电磁兼容问题,利用三维电场边界元法实现换流阀寄生参数的提取,通过理论计算、数值仿真及试验测试等多种手段,对瞬态电磁干扰等问题提出了解决方案,为换流阀的研制和工程应用提供了必要的技术支撑。总结了上述领域的研究成果,对未来特高压直流换流阀电磁兼容领域的研究课题与解决方案提出了一些建议和设想。展开更多
The electrical modulation valve can provide proportional output valve element displacement,flow,or pressure according to a continuously changing input electrical signal.It is the core component of electro-hydraulic pr...The electrical modulation valve can provide proportional output valve element displacement,flow,or pressure according to a continuously changing input electrical signal.It is the core component of electro-hydraulic proportional control technology.To remove the influence of pressure difference changes on the output flow,the traditional scheme is to use a pressure compensation valve,which increases the difficulty of both manufacturing and maintaining the valve.To solve this problem,a method of digital and mechanical redundancy control flow is proposed.Pressure sensors are installed at the inlet and outlet of the valve,and the controller adjusts the displacement of the valve element according to the pressure difference between the valve ports to realize high-precision control of the flow.A pressure compensation valve is installed in front of the valve,and a three-way solenoid valve is used to control the working of the compensation valve.In the case of sensor failure,the valve is switched to the mechanical compensation differential pressure mode,to control the flow and to achieve redundancy control.The system security is thereby improved.The feasibility of this scheme is verified through simulation and tests.The results show that,both for digital compensation and mechanical compensation,the output flow can be kept constant when the pressure difference changes,and the system has good static and dynamic characteristics.The principle can be applied to the displacement-flow feedback type electrical modulation valve,and can realize accurate control of the flow of the pilot valve and,finally,accurate control of the flow in the main valve.展开更多
文摘Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of all-electric subsea technology instead of hydraulic technology is growing and will be the future of subsea systems due to the former’s environmental and functional advantages and reduced costs.The benefits of all-electric subsea systems are health,safety,and environment(HSE)and improved reliability,flexibility,and functionality compared with traditional hydraulic-electrical systems.Existing electrohydraulic technology for a typical subsea system,hydraulic and electric actuators,and subsea manifold valves including valve types and selection philosophy have been reviewed in this paper.Some major worldwide oil companies such as Equinor and Schlumberger have successful experiences with subsea electric actuators.Considering the benefits of all-electric technology especially in terms of cost and HSE,as well as successful experiences of two major oil companies,further research in this area is warranted.One of the gaps in existing reviewed literature is the effect of using all-electric actuators for manifold valves.Thus,three main questions related to electric actuator selection,requirement of safety integrity level(SIL),and effect of using electric actuators on manifold valve selection have been addressed and answered.Forty hydraulic actuated manifold valves from nine past subsea projects in different parts of the world,mainly Africa and Australia,have been selected for the analysis of all-electric actuators.Results show that 93%of the valves require spring-return electric actuators,whereas 7%can be operated with conventional electric actuators without any spring.The manifold valves do not require SIL certification because they are not connected to an emergency shut down system.Introducing the electric actuators to the manifold valve will not change the valve selection philosophy.
文摘Objective: To present a case of electrical storm (ES) in a female patient with rheumatic valve disease. Methods: A female patient with severe rheumatic valve disease suffered an unexpected ES. She received more than 50 electrical shocks for repeated cardiac arrests due to ES over 16 hours. Then she received beta-blocking agent treatment and had an operation of double valves replacement. Results: ES was suppressed by sympathetic blockade with beta-receptor blocker and finally disappeared after the double pathological valves had been replaced. Conclusion: Increased sympathetic activity plays an important role in the genesis of electrical storm and sympathetic blockade may effectively suppress ES. However, the most important thing in the treatment of ES is to identify and eliminate the underlying cause of ES.
文摘Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: approximate 25 times, the accuracy of DC output voltage: ±5%, manual control and automatic control.
文摘BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity.
文摘Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive( VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting,the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation( FFT) was carried out on the pressure signals to convert into frequency domain.From the spectra of pressure pulsation signals,the characteristics of pressure pulsation are obtained for each stage and for various speed settings which were then used to understand its variation with speed and stages.
文摘特高压直流换流阀的电磁场和电磁兼容性是其研制过程中的关键问题,国内外学者对此进行了系统研究。中国电力科学研究院成功研制出中国首个具有完全自主知识产权的800 kV/4 750 A特高压直流(ultra high voltage directcurrent,UHVDC)换流阀。针对电磁场和电磁兼容问题,利用三维电场边界元法实现换流阀寄生参数的提取,通过理论计算、数值仿真及试验测试等多种手段,对瞬态电磁干扰等问题提出了解决方案,为换流阀的研制和工程应用提供了必要的技术支撑。总结了上述领域的研究成果,对未来特高压直流换流阀电磁兼容领域的研究课题与解决方案提出了一些建议和设想。
基金supported by the National Key Research and Development Program of China(No.2019YFB2004502)the National Natural Science Foundation of China(No.51975397)the Key Research and Development Program of Shanxi Province(No.201903D111007),China。
文摘The electrical modulation valve can provide proportional output valve element displacement,flow,or pressure according to a continuously changing input electrical signal.It is the core component of electro-hydraulic proportional control technology.To remove the influence of pressure difference changes on the output flow,the traditional scheme is to use a pressure compensation valve,which increases the difficulty of both manufacturing and maintaining the valve.To solve this problem,a method of digital and mechanical redundancy control flow is proposed.Pressure sensors are installed at the inlet and outlet of the valve,and the controller adjusts the displacement of the valve element according to the pressure difference between the valve ports to realize high-precision control of the flow.A pressure compensation valve is installed in front of the valve,and a three-way solenoid valve is used to control the working of the compensation valve.In the case of sensor failure,the valve is switched to the mechanical compensation differential pressure mode,to control the flow and to achieve redundancy control.The system security is thereby improved.The feasibility of this scheme is verified through simulation and tests.The results show that,both for digital compensation and mechanical compensation,the output flow can be kept constant when the pressure difference changes,and the system has good static and dynamic characteristics.The principle can be applied to the displacement-flow feedback type electrical modulation valve,and can realize accurate control of the flow of the pilot valve and,finally,accurate control of the flow in the main valve.