Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°-107°E, 36°-37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the elec...Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°-107°E, 36°-37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (I), Xihuashan-Nanhuashan uplift (II), Xingrenbu-Haiyuan basin (III), Zhongwei-Qingshuihe basin (IV), Zhongning-Hongsibu basin (V) and west-margin zone of Ordos (VI) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections II and VI, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section III is the deepest, displaying a dustpan shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian O...The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.展开更多
In this paper, total lightning data observed by SAFIR3000 3-D Lightning Locating System was combined with radar data to analyze characteristics of the lightning activity and electric structure of a hailstorm that occu...In this paper, total lightning data observed by SAFIR3000 3-D Lightning Locating System was combined with radar data to analyze characteristics of the lightning activity and electric structure of a hailstorm that occurred in Beijing on 31 May 2005. The results indicated that there were two active periods for the lightning activity during the hailstorm process. The hail shooting was found in the first period. After the end of the hail shooting, lightning frequency decreased suddenly. However, more active lightning activities occurred in the second period with lots of them appearing in the cloud anvil region. The peak of the lightning frequency came about 5 min prior to the hail shooting. Only 6.16% of the total lightning was cloud-to-ground (CG) lightning, among which 20% had positive polarity. This percentage was higher than that in normal thunderstorms. In addition, heavier positive CG lightning discharge occurred before rather than after the hail shooting. In the stage of the hail shooting, the electric structure of the hailstorm was inverted, with the main negative charge region located around the -40℃ level and the main positive charge region around the -15℃ level. In addition, a weak negative charge region existed below the positive charge region transitorily. After the hail shooting, the electric structure underwent fast and persistent adjustments and became a normal tripole, with positive charge in the upper and lower levels and negative charge in the middle levels. However, the electric structure was tilted under the influence of the westerly wind in the middle and upper levels. The lightning activity and electric structure were closely related to the dynamic and microphysical processes of the hailstorm. It was believed that severe storms with stronger updrafts were more conducive to an inverted tripolar electric structure than normal thunderstorms, and the inverted distribution could then facilitate more positive CG lightning in the severe storms.展开更多
Progresses in the research on physical processes of lightning discharge and electric structure of thunderstorm in the last decade in China have been reviewed. By using the self-developed lightning detecting and locati...Progresses in the research on physical processes of lightning discharge and electric structure of thunderstorm in the last decade in China have been reviewed. By using the self-developed lightning detecting and locating techniques with high temporal and spatial resolution, the characteristics and parameters of lightning discharge in some representative areas in China have been obtained. Observations on lightning activity were conducted for the first time in the Qinghai-Tibetan Plateau in 2002-2005, and the special characteristics of the thunderstorm and lightning activity in the plateau were revealed. The lightning spectra in the band of visible light were recorded, and the spectral lines were identified in detail with introduction of modem theories of atomic structure. The techniques on artificially altitude triggered lightning and related measurements under a harsh electromagnetic environment have been well developed. Evidences of bi-directional leader propagation were observed by means of optics and VHF radiation during the triggered lightning discharges. Some lightning protection devices have been tested using the artificial lightning triggering techniques. In addition, the correlation between lightning activities and weather and climate was preliminarily studied.展开更多
In this paper the Capon spectral estimation method,i.e.the maximun likelihood method,was applied to the analysis of the short periodic geomagnetic events occurred from January to March,1986 at the Chinese Great Wall S...In this paper the Capon spectral estimation method,i.e.the maximun likelihood method,was applied to the analysis of the short periodic geomagnetic events occurred from January to March,1986 at the Chinese Great Wall Station on Antarctic(CGWSA) and the complex transfer functions A and B for Peneds T=45 s-160 min were calculated,derived from the medulus|A| of A and its phase angle,it seems that there are two structural layers in the subterranean electric conductivity under the CGWSA,the corresponding periods at the interface being around 20-26 minutes.We also compared the Capon spectral estimation method with the Fast Fourier Trasformation(FFT).The former appeared to be better than the latter.展开更多
The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magne...The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high- conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone.展开更多
Electromagnetic interference(EMI)shielding materials with ultrathin,flexible,superior mechanical and thermal management properties are highly desirable for smart and wearable electronics.Here,ultrathin and flexible Ni...Electromagnetic interference(EMI)shielding materials with ultrathin,flexible,superior mechanical and thermal management properties are highly desirable for smart and wearable electronics.Here,ultrathin and flexible Ni/Cu/metallic glass/Cu/Ni(Ni/Cu/MG)multilayer composite with alternate magnetic and electrical structures was designed via facial electroless plating of Cu and Ni on an Fe-based metallic glass.The resultant 0.02 mm-thick Ni/Cu/MG composite displays a superior EMI shielding effectiveness(EMI SE)of 35 dB and a great EMI SE/t of 1750 dB/mm,which is greater than those of composites with monotonous multilayer or homogeneous structures.The improved EMI SE originates from the massive ohmic losses,the enhanced internal reflection/absorption,and the abundant interfacial polarization loss.Particularly,Ni/Cu/MG exhibits a high tensile strength of up to 1.2 GPa and outstanding mechanical stability,enabling the EMI SE remains unchanged after 10,000 times of bending.Moreover,Ni/Cu/MG has excellent Joule heating characteristics and thermal stability,which is very suitable for heating components of wearable hyperthermia devices.展开更多
The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces ...The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture, Bangong.Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.展开更多
The northern Wuyi area,which is located in the northern Wuyi metallogenic belt,has superior mineralization conditions.The Pingxiang-Guangfeng-Jiangshan-Shaoxing fault(PSF)extends across the whole region regardless of ...The northern Wuyi area,which is located in the northern Wuyi metallogenic belt,has superior mineralization conditions.The Pingxiang-Guangfeng-Jiangshan-Shaoxing fault(PSF)extends across the whole region regardless of whether or how the PSF relates to the near-surface mineralization.We carried out an MT survey in the region and obtained a reliable 2D model of the crustal electrical structure to a depth of 30 km.In the resistivity model,we inferred that a continuous high conductivity belt that ranges from the shallow to deep crust is a part of the PSF.Then,we estimated the fluid content and pressure gradient to identify the deep sources of fluid as well as its pattern of motion pattern.Finally,we proposed a model for the deep metallogenic migration processes that combines geological data,fluid content data,pressure gradient data,and the subsurface resistivity model.The model analysis showed that the Jiangnan orogenic belt and the Cathaysia block formed the PSF during the process of com.The deep fluid migrated upward through the PSF to the shallow crust.Therefore,we believe that the PSF is an ore-forming fluid migration channel and that it laid the material basis for large-scale mineralization in the shallow crust.展开更多
Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a compo...Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.展开更多
Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ...Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.展开更多
Objective The Lanping-Simao Basin in western Yunnan, located in the southeastern margin of the Tibetan Plateau, is tectonically in the transition zone between the Gondwana and Eurasia tectonic domains. It is also the ...Objective The Lanping-Simao Basin in western Yunnan, located in the southeastern margin of the Tibetan Plateau, is tectonically in the transition zone between the Gondwana and Eurasia tectonic domains. It is also the frontier zone of northeastern extrusion of the Indochina Plate towards the Eurasia Plate as well as the escape zone for the deep material. The middle axial tectonic zone, also known as the Lanping-Simao Fault (LSF) in previous study, is a giant intraplate tectonic belt composed of a series of narrow uplift belt, rupture depression zone, metamorphic belt, alteration belt and marginal fracture system, which were formed by the compressional uplift of the central depression of the Lanping-Simao Basin. This tectonic unit controls the geological evolution, seismic activity, hot spring distribution and ore formation of the LanpingSimao Basin since the Mesozoic and Cenozoic.展开更多
Drilling a well randomly would lead to high uncertainties and could not meet the demand of water supply from the increasing population.It is in dire need to improve success rate of well drilling.The high-density resis...Drilling a well randomly would lead to high uncertainties and could not meet the demand of water supply from the increasing population.It is in dire need to improve success rate of well drilling.The high-density resistivity method offers us a good choice.In this study,high-density resistivity method is used for groundwater survey in five villages in the Taobei District of Baicheng.The data obtained by high-density resistivity method is inverted through Res2dinv software.It is found that the electrical structure is characterized by a horizontal layer distribution,and the resistivity shows a"high-medium low-low"feature from shallow to deep.Moreover,obvious electrical gradient zones are identified in the strata below each section,which are interpreted as tectonic weak zones,i.e.,the faults.The low-resistance anomaly areas are inferred to be favorable aquifers.The results show that high-density resistivity exploration is an efficient and practical method for determining water well sites in rural areas and can provide a guide for finding water resources in the area.展开更多
The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and grow...The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.展开更多
A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudina...A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements.展开更多
The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northwar...The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northward, extends downward up to the depth of about 55 km and indicates the exposure of the possible real position of the Yarlung Zangbo suture. There are three sets of electrical gradient and distorted zones reflecting the structure of faults in the high conductivity region. These three fault belts, which dip northward and gradually converge downward to the main fault belt, and a series of south dipping faults in the north side form the exhaled structural characteristics of the Yarlung Zangbo suture. There is a close relationship between the large high conductivity body and the underground thermal state.展开更多
In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along thr...In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along three N - S MT profiles across the basin .The MT results indicate that the south and north parts of the Qiangtang basin have a good contrast in the deep electri cal structure . In the south Qiangtang , there are generally two high conductivity layers in the crust . The first is at a depth of about 10 - 25 km and possesses a resistivity of about 10 - 80 Ωm .The second ,the high conductivity layer in the lower crust ,is at a depth of about 40 - 70 km with 3 - 50 Ωm .In the north Qiangtang .there is generally one high conductivity layer .It is at a depth of about 10 - 30 km and the resistivity is about 1-60 Ωm . The thickness of the second high conductivity layer in both the south Qiangtang and the Bangong-Nujiang suture is much greater than that of the first .The thickness of the lithosphere is about 110-120 km for the Bangong-Nujiang suture ,115 km for the south Qiangtang and 100-130 km for the north Qiangtang . On the difference of the deep electrical structures of the crust between the south and the north Qiangtang , we believe that it is related to the eastward flow of the crustal substance .展开更多
Two superwide bands of frequency magnetotelluric (MT) profiles (Yadong-Xuegula, Jilong-Cuoqin) across the Yaluzangbu suture were deployed along the west-east direction, for the research into the electrical conductivit...Two superwide bands of frequency magnetotelluric (MT) profiles (Yadong-Xuegula, Jilong-Cuoqin) across the Yaluzangbu suture were deployed along the west-east direction, for the research into the electrical conductivity structure in the shallow and deep crust along the west-east and north-south directions in the southern part of Tibet plateau. The main characters of the electrical conductivity structure in this region are: (1) large-scale high resistive bodies exist near the Yaluzangbu suture surface, which extends to the maximum depth of more than 30 km. They are the reflection of the Gangdise granite; (2) small-scale conductive bodies exist in the southern part of the Yaluzangbu suture, and large-scale ones under the suture and in the northern part; (3) conductive bodies widely spread in the crust along the profiles. They are discontinuous, mainly decline to the north and become larger in scale, steeper near the suture, deeper gradually from south to north; (4) under the Yaluzangbu suture, the conductive bodies become larger in scale, more conductive gradually from west to east. These important electrical characters are caused possibly by the India plate subduction to the north. The variation in characters of the large-scale conductive bodies from west to east may be the proof that the plate collision might cause substantial movement along the west-east direction.展开更多
In this study,we present a physical model to explain the generation mechanism of nonlinear periodic waveswith a large amplitude electric field structures propagating obliquely and exactly parallel to the magnetic fiel...In this study,we present a physical model to explain the generation mechanism of nonlinear periodic waveswith a large amplitude electric field structures propagating obliquely and exactly parallel to the magnetic field.The'Sagdeev potential' from the MHD equations is derived and the nonlinear electric field waveforms are obtained when theMach number,direction of propagation,and the initial electric field satisfy certain plasma conditions.For the parallelpropagation,the amplitude of the electric field waves with ion-acoustic mode increases with the increase of initial electricfield and Mach number but its frequency decreases with the increase of Mach number.The amplitude and frequency ofthe electric field waves with ion-cyclotron mode decrease with the increase of Mach number and become less spiky,andits amplitude increases with the increase of initial electric field.For the oblique propagation,only periodic electric fieldwave with an ion-cyclotron mode obtained,its amplitude and frequency increase with the increase of Mach number andbecome spiky.From our model the electric field structures show periodic,spiky,and saw-tooth behaviours correspondingto different plasma conditions.展开更多
基金National Natural Science Foundation of China (40374032), State Key Basic Research Development and Program-ming Project (95-13-02-02) and Joint Seismological Science Foundation of China (102088).
文摘Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°-107°E, 36°-37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (I), Xihuashan-Nanhuashan uplift (II), Xingrenbu-Haiyuan basin (III), Zhongwei-Qingshuihe basin (IV), Zhongning-Hongsibu basin (V) and west-margin zone of Ordos (VI) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections II and VI, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section III is the deepest, displaying a dustpan shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金granted by the Geological Survey Project of the China Geological Survey for Regional Geophysical Survey in Beishan and Adjacent Areas(Grant No.DD20230254)。
文摘The Central Asian Orogenic Belt(CAOB)is a giant orogenic belt located between the Siberian Plate,the Tarim Plate,and the North China Plate,which records the longterm and complex geologic evolution of the Paleo-Asian Ocean from the Early Neoproterozoic(ca.1000 Ma)to the Late Paleoproterozoic(ca.250 Ma)process.The Beishan Block is located in the middle and southern edge of the Central Asian orogenic belt,at the intersection of the Tarim plate,the Siberian Plate and the Kazakhstan Plate.
基金Supported by the Natural Science Foundation of China under Grant No.40875003the National Basic Research Program of China under No.2004CB418306.
文摘In this paper, total lightning data observed by SAFIR3000 3-D Lightning Locating System was combined with radar data to analyze characteristics of the lightning activity and electric structure of a hailstorm that occurred in Beijing on 31 May 2005. The results indicated that there were two active periods for the lightning activity during the hailstorm process. The hail shooting was found in the first period. After the end of the hail shooting, lightning frequency decreased suddenly. However, more active lightning activities occurred in the second period with lots of them appearing in the cloud anvil region. The peak of the lightning frequency came about 5 min prior to the hail shooting. Only 6.16% of the total lightning was cloud-to-ground (CG) lightning, among which 20% had positive polarity. This percentage was higher than that in normal thunderstorms. In addition, heavier positive CG lightning discharge occurred before rather than after the hail shooting. In the stage of the hail shooting, the electric structure of the hailstorm was inverted, with the main negative charge region located around the -40℃ level and the main positive charge region around the -15℃ level. In addition, a weak negative charge region existed below the positive charge region transitorily. After the hail shooting, the electric structure underwent fast and persistent adjustments and became a normal tripole, with positive charge in the upper and lower levels and negative charge in the middle levels. However, the electric structure was tilted under the influence of the westerly wind in the middle and upper levels. The lightning activity and electric structure were closely related to the dynamic and microphysical processes of the hailstorm. It was believed that severe storms with stronger updrafts were more conducive to an inverted tripolar electric structure than normal thunderstorms, and the inverted distribution could then facilitate more positive CG lightning in the severe storms.
基金Supported jointly by the National Natural Science Foundation of China under Grant Nos. 40135010, 40325013, and 49975003
文摘Progresses in the research on physical processes of lightning discharge and electric structure of thunderstorm in the last decade in China have been reviewed. By using the self-developed lightning detecting and locating techniques with high temporal and spatial resolution, the characteristics and parameters of lightning discharge in some representative areas in China have been obtained. Observations on lightning activity were conducted for the first time in the Qinghai-Tibetan Plateau in 2002-2005, and the special characteristics of the thunderstorm and lightning activity in the plateau were revealed. The lightning spectra in the band of visible light were recorded, and the spectral lines were identified in detail with introduction of modem theories of atomic structure. The techniques on artificially altitude triggered lightning and related measurements under a harsh electromagnetic environment have been well developed. Evidences of bi-directional leader propagation were observed by means of optics and VHF radiation during the triggered lightning discharges. Some lightning protection devices have been tested using the artificial lightning triggering techniques. In addition, the correlation between lightning activities and weather and climate was preliminarily studied.
文摘In this paper the Capon spectral estimation method,i.e.the maximun likelihood method,was applied to the analysis of the short periodic geomagnetic events occurred from January to March,1986 at the Chinese Great Wall Station on Antarctic(CGWSA) and the complex transfer functions A and B for Peneds T=45 s-160 min were calculated,derived from the medulus|A| of A and its phase angle,it seems that there are two structural layers in the subterranean electric conductivity under the CGWSA,the corresponding periods at the interface being around 20-26 minutes.We also compared the Capon spectral estimation method with the Fast Fourier Trasformation(FFT).The former appeared to be better than the latter.
基金supported by National High-Tech R&D Program of China (Grant 2014AA06A612)the project of the China Geological Survey (Grants 1212011220263,1212010914049 and 1212011121273)
文摘The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high- conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone.
基金This work was financially supported by National Key Research and Development Program of China(No.2016YFB0300500)the National Natural Science Foundation of China(No.51771215)+1 种基金the Ningbo Major Special Projects of the Plan“Science and Technology Innovation 2025”(No.2018B10084)K.C.Wong Magna Fund in Ningbo University。
文摘Electromagnetic interference(EMI)shielding materials with ultrathin,flexible,superior mechanical and thermal management properties are highly desirable for smart and wearable electronics.Here,ultrathin and flexible Ni/Cu/metallic glass/Cu/Ni(Ni/Cu/MG)multilayer composite with alternate magnetic and electrical structures was designed via facial electroless plating of Cu and Ni on an Fe-based metallic glass.The resultant 0.02 mm-thick Ni/Cu/MG composite displays a superior EMI shielding effectiveness(EMI SE)of 35 dB and a great EMI SE/t of 1750 dB/mm,which is greater than those of composites with monotonous multilayer or homogeneous structures.The improved EMI SE originates from the massive ohmic losses,the enhanced internal reflection/absorption,and the abundant interfacial polarization loss.Particularly,Ni/Cu/MG exhibits a high tensile strength of up to 1.2 GPa and outstanding mechanical stability,enabling the EMI SE remains unchanged after 10,000 times of bending.Moreover,Ni/Cu/MG has excellent Joule heating characteristics and thermal stability,which is very suitable for heating components of wearable hyperthermia devices.
基金This paper is supported by the National Natural Science Foundation of China (No. 40404006)the Focused Subject Program of Beijing (No. XK104910598).
文摘The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture, Bangong.Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.
基金This research was jointly supported by the National Natural Science Foundation of China(Grant Nos.92062108,41574133,41630320,41864004)Geological Survey Project of China(Grant Nos.DD20190012,DD20160082,DD20221643)+1 种基金Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2019-B108)National Key Research and Development Program of China(Grant No.2016YFC0600201).
文摘The northern Wuyi area,which is located in the northern Wuyi metallogenic belt,has superior mineralization conditions.The Pingxiang-Guangfeng-Jiangshan-Shaoxing fault(PSF)extends across the whole region regardless of whether or how the PSF relates to the near-surface mineralization.We carried out an MT survey in the region and obtained a reliable 2D model of the crustal electrical structure to a depth of 30 km.In the resistivity model,we inferred that a continuous high conductivity belt that ranges from the shallow to deep crust is a part of the PSF.Then,we estimated the fluid content and pressure gradient to identify the deep sources of fluid as well as its pattern of motion pattern.Finally,we proposed a model for the deep metallogenic migration processes that combines geological data,fluid content data,pressure gradient data,and the subsurface resistivity model.The model analysis showed that the Jiangnan orogenic belt and the Cathaysia block formed the PSF during the process of com.The deep fluid migrated upward through the PSF to the shallow crust.Therefore,we believe that the PSF is an ore-forming fluid migration channel and that it laid the material basis for large-scale mineralization in the shallow crust.
基金supported by grants from the National Natural Science Foundation of China(General Program No.40974058)National Science Fund for Distinguished Young Scholars(No.40904025 and 41404060)+4 种基金Fundamental Research Funds for the Central Universities(2652014016)National Natural Science Foundation of ChinaUnited States National Science FoundationScience Foundation of Ireland(award 08/RFP/GEO1693 to AGJ)Natural Science and Engineering Research Council(Canada)for financial support
文摘Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.
基金Supported by National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2013BAG14B01)
文摘Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.
基金financially by the National Science and Technology Support Project (grant No.2006BAB01B07)the National Natural Science Foundation of China (grant No.41202057)
文摘Objective The Lanping-Simao Basin in western Yunnan, located in the southeastern margin of the Tibetan Plateau, is tectonically in the transition zone between the Gondwana and Eurasia tectonic domains. It is also the frontier zone of northeastern extrusion of the Indochina Plate towards the Eurasia Plate as well as the escape zone for the deep material. The middle axial tectonic zone, also known as the Lanping-Simao Fault (LSF) in previous study, is a giant intraplate tectonic belt composed of a series of narrow uplift belt, rupture depression zone, metamorphic belt, alteration belt and marginal fracture system, which were formed by the compressional uplift of the central depression of the Lanping-Simao Basin. This tectonic unit controls the geological evolution, seismic activity, hot spring distribution and ore formation of the LanpingSimao Basin since the Mesozoic and Cenozoic.
基金Project of the National Natural Science Foundation(No.41874125).
文摘Drilling a well randomly would lead to high uncertainties and could not meet the demand of water supply from the increasing population.It is in dire need to improve success rate of well drilling.The high-density resistivity method offers us a good choice.In this study,high-density resistivity method is used for groundwater survey in five villages in the Taobei District of Baicheng.The data obtained by high-density resistivity method is inverted through Res2dinv software.It is found that the electrical structure is characterized by a horizontal layer distribution,and the resistivity shows a"high-medium low-low"feature from shallow to deep.Moreover,obvious electrical gradient zones are identified in the strata below each section,which are interpreted as tectonic weak zones,i.e.,the faults.The low-resistance anomaly areas are inferred to be favorable aquifers.The results show that high-density resistivity exploration is an efficient and practical method for determining water well sites in rural areas and can provide a guide for finding water resources in the area.
基金Supported by the National Natural Science Foundation of China under Grant No 61434006
文摘The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.
基金Supported by the National Innovative Projects for College Students under Grant No 201310320025the National Natural Science Foundation of China under Grant Nos 61401182 and 61372057the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements.
基金The study is supported by National Natural Science Foundation of China
文摘The INDEPTH MT results show that there are no electrical features of deep fractures along the Yarlung Zangbo River, but a large high conductivity body exists in the area between Gyangze and Rinbung. It dips northward, extends downward up to the depth of about 55 km and indicates the exposure of the possible real position of the Yarlung Zangbo suture. There are three sets of electrical gradient and distorted zones reflecting the structure of faults in the high conductivity region. These three fault belts, which dip northward and gradually converge downward to the main fault belt, and a series of south dipping faults in the north side form the exhaled structural characteristics of the Yarlung Zangbo suture. There is a close relationship between the large high conductivity body and the underground thermal state.
基金The study is supported by the cooperative project of Central South Bureau of Petroleum Geology ,Ministry of Geology,Mineral Resources and China University of Geosciences
文摘In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along three N - S MT profiles across the basin .The MT results indicate that the south and north parts of the Qiangtang basin have a good contrast in the deep electri cal structure . In the south Qiangtang , there are generally two high conductivity layers in the crust . The first is at a depth of about 10 - 25 km and possesses a resistivity of about 10 - 80 Ωm .The second ,the high conductivity layer in the lower crust ,is at a depth of about 40 - 70 km with 3 - 50 Ωm .In the north Qiangtang .there is generally one high conductivity layer .It is at a depth of about 10 - 30 km and the resistivity is about 1-60 Ωm . The thickness of the second high conductivity layer in both the south Qiangtang and the Bangong-Nujiang suture is much greater than that of the first .The thickness of the lithosphere is about 110-120 km for the Bangong-Nujiang suture ,115 km for the south Qiangtang and 100-130 km for the north Qiangtang . On the difference of the deep electrical structures of the crust between the south and the north Qiangtang , we believe that it is related to the eastward flow of the crustal substance .
文摘Two superwide bands of frequency magnetotelluric (MT) profiles (Yadong-Xuegula, Jilong-Cuoqin) across the Yaluzangbu suture were deployed along the west-east direction, for the research into the electrical conductivity structure in the shallow and deep crust along the west-east and north-south directions in the southern part of Tibet plateau. The main characters of the electrical conductivity structure in this region are: (1) large-scale high resistive bodies exist near the Yaluzangbu suture surface, which extends to the maximum depth of more than 30 km. They are the reflection of the Gangdise granite; (2) small-scale conductive bodies exist in the southern part of the Yaluzangbu suture, and large-scale ones under the suture and in the northern part; (3) conductive bodies widely spread in the crust along the profiles. They are discontinuous, mainly decline to the north and become larger in scale, steeper near the suture, deeper gradually from south to north; (4) under the Yaluzangbu suture, the conductive bodies become larger in scale, more conductive gradually from west to east. These important electrical characters are caused possibly by the India plate subduction to the north. The variation in characters of the large-scale conductive bodies from west to east may be the proof that the plate collision might cause substantial movement along the west-east direction.
基金Supported by National Natural Science Foundation of China under Grant Nos.40674091 and 40621003the Specialized Research Fund for State Key Laboratories
文摘In this study,we present a physical model to explain the generation mechanism of nonlinear periodic waveswith a large amplitude electric field structures propagating obliquely and exactly parallel to the magnetic field.The'Sagdeev potential' from the MHD equations is derived and the nonlinear electric field waveforms are obtained when theMach number,direction of propagation,and the initial electric field satisfy certain plasma conditions.For the parallelpropagation,the amplitude of the electric field waves with ion-acoustic mode increases with the increase of initial electricfield and Mach number but its frequency decreases with the increase of Mach number.The amplitude and frequency ofthe electric field waves with ion-cyclotron mode decrease with the increase of Mach number and become less spiky,andits amplitude increases with the increase of initial electric field.For the oblique propagation,only periodic electric fieldwave with an ion-cyclotron mode obtained,its amplitude and frequency increase with the increase of Mach number andbecome spiky.From our model the electric field structures show periodic,spiky,and saw-tooth behaviours correspondingto different plasma conditions.