As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based c...The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.展开更多
With proper power scheduling and dynamic pricing,a unidirectional charger can provide benefits and regulation services to the electricity grid,at a level approaching that of bidirectional charging.Power scheduling and...With proper power scheduling and dynamic pricing,a unidirectional charger can provide benefits and regulation services to the electricity grid,at a level approaching that of bidirectional charging.Power scheduling and schedule flexibility of electric and plug-in hybrid vehicles are addressed.The use of electric vehicles(EVs)as flexibility resources and associated unidirectional vehicle-to-grid benefits are investigated.Power can be scheduled with the EV charger in control of charging or via control by a utility or an aggregator.Charging cost functions suitable for charger-and utility-controlled power scheduling are presented.Ancillary service levels possible with unidirectional vehicle-to-grid are quantified using sample charging scenarios from published data.Impacts of various power schedules and vehicle participation as a flexibility resource on electricity locational prices are evaluated.These include benefits to both owners and load-serving entities.Frequency regulation is considered in the context of unidirectional charging.展开更多
A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours...A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement.展开更多
Adopting high penetration levels of electric vehicles(EVs) necessitates the implementation of appropriate charging management systems to mitigate their negative impacts on power distribution networks. Currently, most ...Adopting high penetration levels of electric vehicles(EVs) necessitates the implementation of appropriate charging management systems to mitigate their negative impacts on power distribution networks. Currently, most of the proposed EV charging management techniques rely on the availability of high-bandwidth communication links. Such techniques are far from realization due to(1) the lack of utility-grade communication systems in many cases such as secondary(low-voltage) power distribution systems to which EVs are connected, rural areas, remote communities, and islands, and(2) existing fears and concerns about the data privacy of EV users and cyber-physical security. For these cases, appropriate local control schemes are needed to ensure the adequate management of EV charging without violating the grid operation requirements. Accordingly, this paper introduces a new communication-less management strategy for EV charging in droop-controlled islanded microgrids. The proposed strategy is autonomous, as it is based on the measurement of system frequency and local bus voltages. The proposed strategy implements a social charging fairness policy during periods when the microgrid distributed generators(DGs) are in short supply by allocating more system capacity to the EVs with less charging in the past. Furthermore, a novel communication-less EV load shedding scheme is incorporated into the management strategy to provide relief to the microgrid during events of severe undervoltage or underfrequency occurrences due to factors such as high loading or DG outages. Numerical simulations demonstrate the superiority of the proposed strategy over the state-of-the-art controllers in modulating the EV charging demand to counteract microgrid instability.展开更多
As the adoption of Electric Vehicles(EVs)intensifies,two primary challenges emerge:limited range due to battery constraints and extended charging times.The traditional charging stations,particularly those near highway...As the adoption of Electric Vehicles(EVs)intensifies,two primary challenges emerge:limited range due to battery constraints and extended charging times.The traditional charging stations,particularly those near highways,exacerbate these issues with necessary detours,inconsistent service levels,and unpredictable waiting durations.The emerging technology of dynamic wireless charging lanes(DWCLs)may alleviate range anxiety and eliminate long charging stops;however,the driving speed on DWCL significantly affects charging efficiency and effective charging time.Meanwhile,the existing research has addressed load balancing optimization on Dynamic Wireless Charging(DWC)systems to a limited extent.To address this critical issue,this study introduces an innovative eco-driving speed control strategy,providing a novel solution to the multi-objective optimization problem of speed control on DWCL.We utilize mathematical programming methods and incorporate the longitudinal dynamics of vehicles to provide an accurate physical model of EVs.Three objective functions are formulated to tackle the challenges at hand:reducing travel time,increasing charging efficiency,and achieving load balancing on DWCL,which corresponds to four control strategies.The results of numerical tests indicate that a comprehensive control strategy,which considers all objectives,achieves a minor sacrifice in travel time reduction while significantly improving energy efficiency and load balancing.Furthermore,by defining the energy demand and speed range through an upper operation limit,a relatively superior speed control strategy can be selected.This work contributes to the discourse on DWCL integration into modern transportation systems,enhancing the EV driving experience on major roads.展开更多
In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured ...In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.展开更多
The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station ...The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station regulates the supply voltage and frequency without the use of amechanical speed governor. It also assures that energy gained from grid or by the DG set willhave the unity power factor (UPF) when the load is nonlinear. Besides this, the Point of CommonCoupling (PCC) voltage is synchronised with the grid/generator voltage in order to providecontinuous charging. In order to increase the optimal efficiency of the charging stations, thecharging stations will perform the active/reactive power transfer from the vehicle to grid, vehicleto house and vehicle to vehicle (V2V) power transfer. The operational experiment of the chargingstation is simulated and verified by using MATLAB/SIMULINK.展开更多
Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islande...Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islanded with the support of ESSs.While the daily output of DGs strongly depends on the temporal distribution of natural resources such as wind and solar,unregulated electric vehicle(EV)charging demand will deteriorate the unbalance between the daily load curve and generation curve.In this paper,a statistic model is presented to describe daily EV charging/discharging behaviors considering the randomness of the initial state of charge(SOC)of EV batteries.The optimization problem is proposed to obtain the economic operation for the microgrid based on this model.In dayahead scheduling,with the estimated power generation and load demand,the optimal charging/discharging scheduling of EVs during 24 h is achieved by serial quadratic programming.With the optimal charging/discharging scheduling of EVs,the daily load curve can better track the generation curve.The network loss in grid-connected operation mode and required ESS capacity in islanded operation mode are both decreased.展开更多
Short driving ranges and low braking energy recovery efficiencies are two recognized technical bottlenecks to be overcome in electric vehicles. In this paper, a novel electromechanical-hydraulic coupling system is pro...Short driving ranges and low braking energy recovery efficiencies are two recognized technical bottlenecks to be overcome in electric vehicles. In this paper, a novel electromechanical-hydraulic coupling system is proposed and integrated as a powertrain for electric vehicles, which can assist the electric vehicle to fully utilize its braking energy. The hydraulic regenerative braking force and electric regenerative braking force can provide all the braking needs using the medium and small braking intensities. Furthermore, an improved compound brake control strategy based on the braking force distribution is proposed and simulated. The results show that under the premise of ensuring braking stability, the electromechanical-hydraulic coupling driving electric vehicle can adapt to various working conditions with excellent energy-saving results. The hydraulic accumulator recovery efficiency is above 99%, and the state of charge consumption rate of the battery pack can be reduced by more than 9%. More importantly, the proposed hybrid power system can significantly improve the driving range and energy efficiency, as well as reduce the consumers' mileage anxiety in electric vehicles.展开更多
EVs (electric vehicles) have been widely accepted as a promising solution for reducing oil consumption, air pollution and greenhouse gas emission. The number of EVs is growing very fast over the years. However, the ...EVs (electric vehicles) have been widely accepted as a promising solution for reducing oil consumption, air pollution and greenhouse gas emission. The number of EVs is growing very fast over the years. However, the high adoption of EVs will impose a burden on the power system, especially for neighborhood level network. In this paper, we propose a mixed control framework for EV charging scheduling to mitigate its impact on the power network. A metric for modeling customer's satisfaction is also proposed to compare the user satisfaction for different algorithms. The impacts of the proposed algorithms on EV charging cost, EV penetration and peak power reduction are evaluated with real data for a neighborhood level network. The simulation results demonstrate the effectiveness of the proposed algorithms.展开更多
Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large...Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large scale development of electric vehicle(EV)will also have a significant impact on power grid in general and load characteristics in particular.This paper aims to develop a controlled EV charging strategy to optimize the peak-valley difference of the grid when considering the regional wind and PV power outputs.The probabilistic model of wind and PV power outputs is developed.Based on the probabilistic model,the method of assessing the peak-valley difference of the stochastic load curve is put forward,and a two-stage peak-valley price model is built for controlled EV charging.On this basis,an optimization model is built,in which genetic algorithms are used to determine the start and end time of the valley price,as well as the peak-valley price.Finally,the effectiveness and rationality of the method are proved by the calculation result of the example.展开更多
This study focuses on the potential role of plugin electric vehicles(PEVs) as a distributed energy storage unit to provide peak demand minimization in power distribution systems. Vehicle-to-grid(V2 G) power and curren...This study focuses on the potential role of plugin electric vehicles(PEVs) as a distributed energy storage unit to provide peak demand minimization in power distribution systems. Vehicle-to-grid(V2 G) power and currently available information transfer technology enables utility companies to use this stored energy. The V2 G process is first formulated as an optimal control problem.Then, a two-stage V2 G discharging control scheme is proposed. In the first stage, a desired level for peak shaving and duration for V2 G service are determined off-line based on forecasted loading profile and PEV mobility model. In the second stage, the discharging rates of PEVs are dynamically adjusted in real time by considering the actual grid load and the characteristics of PEVs connected to the grid. The optimal and proposed V2 G algorithms are tested using a real residential distribution transformer and PEV mobility data collected from field with different battery and charger ratings for heuristic user case scenarios. The peak shaving performance is assessed in terms of peak shaving index and peak load reduction. Proposed solution is shown to be competitive with the optimal solution while avoiding high computational loads. The impact of the V2 G management strategy on the system loading at night is also analyzed by implementing an off-line charging scheduling algorithm.展开更多
Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were...Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were depicted. Variations of the aforementioned four parameters are differently obvious. Ending criteria of charge and discharge of Ni/MH batteries are discussed on the basis of the curves. Voltage, capacity and temperature of a battery can be used as ending criteria during charge. When discharge takes place, voltage, capacity and internal resistance can be chosen as ending criteria. As a whole, capacity is more suitable for being used as ending criteria of charge and discharge than the other three parameters. At last, the capacity of a battery is recommended to be ending criteria of charge and discharge. The conclusions will provide references to different capacity Ni/MH batteries for electric vehicles.展开更多
Flexibility in plug-in electric vehicle(PEV) charging can reduce the ancillary cost effects of wind variability and uncertainty on electric power systems. In this paper, we study these benefits of PEV charging, demons...Flexibility in plug-in electric vehicle(PEV) charging can reduce the ancillary cost effects of wind variability and uncertainty on electric power systems. In this paper, we study these benefits of PEV charging, demonstrating that controlled PEV charging can reduce costs associated with wind uncertainty and variability. Interestingly, we show that the system does not require complete control of PEV-charging loads to mitigate the negative cost impacts of wind variability and uncertainty. Rather, PEV owners giving the system a two-hour window of flexibility in which to recharge their vehicles provides much of the benefits that giving full charging control does.展开更多
Due to their fast response and strong short-term power throughput capacity, electric vehicles(EVs) are promising for providing primary frequency support to power grids. However, due to the complicated charging demands...Due to their fast response and strong short-term power throughput capacity, electric vehicles(EVs) are promising for providing primary frequency support to power grids. However, due to the complicated charging demands of drivers, it is challenging to efficiently utilize the regulation capacity of EV clusters for providing stable primary frequency support to the power grid. Accordingly, this paper proposes an adaptive primary frequency support strategy for EV clusters constrained by the charging-behavior-defined operation area. First, the forced charging boundary of the EV is determined according to the driver's charging behavior, and based on this, the operation area is defined. This ensures full utilization of the available frequency support capacity of the EV. An adaptive primary frequency support strategy of EV clusters is then proposed. The output power of EV is adaptively regulated according to the real-time distance from the EV operating point to the forced charging boundary. With the proposed strategy, when the EV approaches the forced charging boundary, its output power is gradually reduced to zero. Then, the rapid state-of-charge declines of EVs and sudden output power reductions in EV clusters caused by forced charging to meet the driver's charging demands can be effectively avoided. EV clusters can then provide sustainable frequency support to the power grid without violating the driver's charging demands. Simulation results validate the proposed operation-area-constrained adaptive primary frequency support strategy, which outperforms the average strategy in terms of stable output maintenance and the optimal utilization of regulation capacities of EV clusters.展开更多
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.
基金supported in part by the European Commission through the project P2P-Smartest:Peer to Peer Smart Energy Distribution Networks (H2020-LCE-2014-3,project 646469)
文摘The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.
文摘With proper power scheduling and dynamic pricing,a unidirectional charger can provide benefits and regulation services to the electricity grid,at a level approaching that of bidirectional charging.Power scheduling and schedule flexibility of electric and plug-in hybrid vehicles are addressed.The use of electric vehicles(EVs)as flexibility resources and associated unidirectional vehicle-to-grid benefits are investigated.Power can be scheduled with the EV charger in control of charging or via control by a utility or an aggregator.Charging cost functions suitable for charger-and utility-controlled power scheduling are presented.Ancillary service levels possible with unidirectional vehicle-to-grid are quantified using sample charging scenarios from published data.Impacts of various power schedules and vehicle participation as a flexibility resource on electricity locational prices are evaluated.These include benefits to both owners and load-serving entities.Frequency regulation is considered in the context of unidirectional charging.
文摘A de-centralised load management technique exploiting the flexibility in the charging of Electric Vehicles (EVs) is presented. Two charging regimes are assumed. The Controlled Charging Regime (CCR) between 16:30 hours and 06:00 hours of the next day and the Uncontrolled Charging Regime (UCR) between 06:00 hours and 16:30 hours of the same day. During the CCR, the charging of EVs is coordinated and controlled by means of a wireless two-way communication link between EV Smart Charge Controllers (EVSCCs) at EV owners’ premises and the EV Load Controller (EVLC) at the local LV distribution substation. The EVLC sorts the EVs batteries in ascending order of their states of charge (SoC) and sends command signals for charging to as many EVs as the transformer could allow at that interval based on the condition of the transformer as analysed by the Distribution Transformer Monitor (DTM). A real and typical urban LV area distribution network in Great Britain (GB) is used as the case study. The technique is applied on</span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">the LV area when its transformer is carrying the future load demand of the area on a typical winter weekday in the year 2050. To achieve the load management, load demand of the LV area network is decomposed into Non-EV <span>load and EV load. The load on the transformer is managed by varying the EV load in an optimisation objective function which maximises the capacity uti</span>lisation of the transformer subject to operational constraints and non-disruption of daily trips of EV owners. Results show that with the proposed load management technique, LV distribution networks could accommodate high uptake of EVs without compromising the useful normal life expectancy of distribution transformers before the need for capacity reinforcement.
基金supported by the Natural Sciences and Engineering Research Council(NSERC)of Canada and Early Researcher Award,Ontario Government,Canada.
文摘Adopting high penetration levels of electric vehicles(EVs) necessitates the implementation of appropriate charging management systems to mitigate their negative impacts on power distribution networks. Currently, most of the proposed EV charging management techniques rely on the availability of high-bandwidth communication links. Such techniques are far from realization due to(1) the lack of utility-grade communication systems in many cases such as secondary(low-voltage) power distribution systems to which EVs are connected, rural areas, remote communities, and islands, and(2) existing fears and concerns about the data privacy of EV users and cyber-physical security. For these cases, appropriate local control schemes are needed to ensure the adequate management of EV charging without violating the grid operation requirements. Accordingly, this paper introduces a new communication-less management strategy for EV charging in droop-controlled islanded microgrids. The proposed strategy is autonomous, as it is based on the measurement of system frequency and local bus voltages. The proposed strategy implements a social charging fairness policy during periods when the microgrid distributed generators(DGs) are in short supply by allocating more system capacity to the EVs with less charging in the past. Furthermore, a novel communication-less EV load shedding scheme is incorporated into the management strategy to provide relief to the microgrid during events of severe undervoltage or underfrequency occurrences due to factors such as high loading or DG outages. Numerical simulations demonstrate the superiority of the proposed strategy over the state-of-the-art controllers in modulating the EV charging demand to counteract microgrid instability.
基金funded by the National Natural Science Foundation of China(72201149)Xinjiang Key Laboratory of Green Mining of Coal resources,Ministry of Education(KLXGY-KB2420)Guangzhou Basic and Applied Basic Research(SL2023A04J00802).
文摘As the adoption of Electric Vehicles(EVs)intensifies,two primary challenges emerge:limited range due to battery constraints and extended charging times.The traditional charging stations,particularly those near highways,exacerbate these issues with necessary detours,inconsistent service levels,and unpredictable waiting durations.The emerging technology of dynamic wireless charging lanes(DWCLs)may alleviate range anxiety and eliminate long charging stops;however,the driving speed on DWCL significantly affects charging efficiency and effective charging time.Meanwhile,the existing research has addressed load balancing optimization on Dynamic Wireless Charging(DWC)systems to a limited extent.To address this critical issue,this study introduces an innovative eco-driving speed control strategy,providing a novel solution to the multi-objective optimization problem of speed control on DWCL.We utilize mathematical programming methods and incorporate the longitudinal dynamics of vehicles to provide an accurate physical model of EVs.Three objective functions are formulated to tackle the challenges at hand:reducing travel time,increasing charging efficiency,and achieving load balancing on DWCL,which corresponds to four control strategies.The results of numerical tests indicate that a comprehensive control strategy,which considers all objectives,achieves a minor sacrifice in travel time reduction while significantly improving energy efficiency and load balancing.Furthermore,by defining the energy demand and speed range through an upper operation limit,a relatively superior speed control strategy can be selected.This work contributes to the discourse on DWCL integration into modern transportation systems,enhancing the EV driving experience on major roads.
文摘In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger.
文摘The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station regulates the supply voltage and frequency without the use of amechanical speed governor. It also assures that energy gained from grid or by the DG set willhave the unity power factor (UPF) when the load is nonlinear. Besides this, the Point of CommonCoupling (PCC) voltage is synchronised with the grid/generator voltage in order to providecontinuous charging. In order to increase the optimal efficiency of the charging stations, thecharging stations will perform the active/reactive power transfer from the vehicle to grid, vehicleto house and vehicle to vehicle (V2V) power transfer. The operational experiment of the chargingstation is simulated and verified by using MATLAB/SIMULINK.
基金The research of this paper was supported by National Natural Science Foundation of China(No.51577032)Natural Science Foundation of Jiangsu Province(No.BK20160679)+1 种基金EPSRC UK-China joint research consortium(EP/F061242/1)Science bridge award(EP/G042594/1).
文摘Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islanded with the support of ESSs.While the daily output of DGs strongly depends on the temporal distribution of natural resources such as wind and solar,unregulated electric vehicle(EV)charging demand will deteriorate the unbalance between the daily load curve and generation curve.In this paper,a statistic model is presented to describe daily EV charging/discharging behaviors considering the randomness of the initial state of charge(SOC)of EV batteries.The optimization problem is proposed to obtain the economic operation for the microgrid based on this model.In dayahead scheduling,with the estimated power generation and load demand,the optimal charging/discharging scheduling of EVs during 24 h is achieved by serial quadratic programming.With the optimal charging/discharging scheduling of EVs,the daily load curve can better track the generation curve.The network loss in grid-connected operation mode and required ESS capacity in islanded operation mode are both decreased.
基金funded by the National Natural Science Foundation of China(52075278)Municipal Livelihood Science and Technology Project of Qingdao(19-6-1-92-nsh).
文摘Short driving ranges and low braking energy recovery efficiencies are two recognized technical bottlenecks to be overcome in electric vehicles. In this paper, a novel electromechanical-hydraulic coupling system is proposed and integrated as a powertrain for electric vehicles, which can assist the electric vehicle to fully utilize its braking energy. The hydraulic regenerative braking force and electric regenerative braking force can provide all the braking needs using the medium and small braking intensities. Furthermore, an improved compound brake control strategy based on the braking force distribution is proposed and simulated. The results show that under the premise of ensuring braking stability, the electromechanical-hydraulic coupling driving electric vehicle can adapt to various working conditions with excellent energy-saving results. The hydraulic accumulator recovery efficiency is above 99%, and the state of charge consumption rate of the battery pack can be reduced by more than 9%. More importantly, the proposed hybrid power system can significantly improve the driving range and energy efficiency, as well as reduce the consumers' mileage anxiety in electric vehicles.
文摘EVs (electric vehicles) have been widely accepted as a promising solution for reducing oil consumption, air pollution and greenhouse gas emission. The number of EVs is growing very fast over the years. However, the high adoption of EVs will impose a burden on the power system, especially for neighborhood level network. In this paper, we propose a mixed control framework for EV charging scheduling to mitigate its impact on the power network. A metric for modeling customer's satisfaction is also proposed to compare the user satisfaction for different algorithms. The impacts of the proposed algorithms on EV charging cost, EV penetration and peak power reduction are evaluated with real data for a neighborhood level network. The simulation results demonstrate the effectiveness of the proposed algorithms.
基金This work is supported by National Natural Science Foundation of China(No.51477116)the Special Founding for"Thousands Plan"of State Grid Corporation of China(No.XT71-12-028).
文摘Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large scale development of electric vehicle(EV)will also have a significant impact on power grid in general and load characteristics in particular.This paper aims to develop a controlled EV charging strategy to optimize the peak-valley difference of the grid when considering the regional wind and PV power outputs.The probabilistic model of wind and PV power outputs is developed.Based on the probabilistic model,the method of assessing the peak-valley difference of the stochastic load curve is put forward,and a two-stage peak-valley price model is built for controlled EV charging.On this basis,an optimization model is built,in which genetic algorithms are used to determine the start and end time of the valley price,as well as the peak-valley price.Finally,the effectiveness and rationality of the method are proved by the calculation result of the example.
基金supported in part by the Scientific and Technological Research Council of Turkey through the International Post Doctoral Fellowship Program under Grant 2219the support of Baskent Electricity Distribution Company that provided the distribution transformer data within the scope of the project DAGSIS(Impact Analysis and Optimization of Distribution-Embedded Systems)funded by Turkish Energy Market Regulatory Authority(EPDK)
文摘This study focuses on the potential role of plugin electric vehicles(PEVs) as a distributed energy storage unit to provide peak demand minimization in power distribution systems. Vehicle-to-grid(V2 G) power and currently available information transfer technology enables utility companies to use this stored energy. The V2 G process is first formulated as an optimal control problem.Then, a two-stage V2 G discharging control scheme is proposed. In the first stage, a desired level for peak shaving and duration for V2 G service are determined off-line based on forecasted loading profile and PEV mobility model. In the second stage, the discharging rates of PEVs are dynamically adjusted in real time by considering the actual grid load and the characteristics of PEVs connected to the grid. The optimal and proposed V2 G algorithms are tested using a real residential distribution transformer and PEV mobility data collected from field with different battery and charger ratings for heuristic user case scenarios. The peak shaving performance is assessed in terms of peak shaving index and peak load reduction. Proposed solution is shown to be competitive with the optimal solution while avoiding high computational loads. The impact of the V2 G management strategy on the system loading at night is also analyzed by implementing an off-line charging scheduling algorithm.
文摘Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were depicted. Variations of the aforementioned four parameters are differently obvious. Ending criteria of charge and discharge of Ni/MH batteries are discussed on the basis of the curves. Voltage, capacity and temperature of a battery can be used as ending criteria during charge. When discharge takes place, voltage, capacity and internal resistance can be chosen as ending criteria. As a whole, capacity is more suitable for being used as ending criteria of charge and discharge than the other three parameters. At last, the capacity of a battery is recommended to be ending criteria of charge and discharge. The conclusions will provide references to different capacity Ni/MH batteries for electric vehicles.
基金financially supported by the National Science Foundation(No.1548015)
文摘Flexibility in plug-in electric vehicle(PEV) charging can reduce the ancillary cost effects of wind variability and uncertainty on electric power systems. In this paper, we study these benefits of PEV charging, demonstrating that controlled PEV charging can reduce costs associated with wind uncertainty and variability. Interestingly, we show that the system does not require complete control of PEV-charging loads to mitigate the negative cost impacts of wind variability and uncertainty. Rather, PEV owners giving the system a two-hour window of flexibility in which to recharge their vehicles provides much of the benefits that giving full charging control does.
基金supported by the Science and Technology Project of State Grid Corporation of China (No.5100-202199274A-0-0-00)。
文摘Due to their fast response and strong short-term power throughput capacity, electric vehicles(EVs) are promising for providing primary frequency support to power grids. However, due to the complicated charging demands of drivers, it is challenging to efficiently utilize the regulation capacity of EV clusters for providing stable primary frequency support to the power grid. Accordingly, this paper proposes an adaptive primary frequency support strategy for EV clusters constrained by the charging-behavior-defined operation area. First, the forced charging boundary of the EV is determined according to the driver's charging behavior, and based on this, the operation area is defined. This ensures full utilization of the available frequency support capacity of the EV. An adaptive primary frequency support strategy of EV clusters is then proposed. The output power of EV is adaptively regulated according to the real-time distance from the EV operating point to the forced charging boundary. With the proposed strategy, when the EV approaches the forced charging boundary, its output power is gradually reduced to zero. Then, the rapid state-of-charge declines of EVs and sudden output power reductions in EV clusters caused by forced charging to meet the driver's charging demands can be effectively avoided. EV clusters can then provide sustainable frequency support to the power grid without violating the driver's charging demands. Simulation results validate the proposed operation-area-constrained adaptive primary frequency support strategy, which outperforms the average strategy in terms of stable output maintenance and the optimal utilization of regulation capacities of EV clusters.