期刊文献+
共找到876篇文章
< 1 2 44 >
每页显示 20 50 100
Battery Charger for Electric Vehicles based on a Wireless Power Transmission 被引量:2
1
作者 Paolo Germano Yves Perriard 《CES Transactions on Electrical Machines and Systems》 2017年第1期66-71,共6页
In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured ... In this paper,the case of a battery charger for electric vehicles based on a wireless power transmission is addressed.The specificity of every stage of the overall system is presented.Based on calculated and measured results,relevant capacitive compensations of the transformer and models are suggested and discussed in order to best match the operating mode and aiming at simplifying as much as possible the control and the electronics of the charger. 展开更多
关键词 battery charge battery model control strategy converter topologies electric vehicle non-linear load SHIELDING wireless power transmission.
下载PDF
Synthetical Efficiency-based Optimization for the Power Distribution of Power-split Hybrid Electric Vehicles 被引量:12
2
作者 WANG Weida HAN Lijin +2 位作者 XIANG Changle MA Yue LIU Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期58-68,共11页
Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviat... Now the optimization strategies for power distribution are researched widely, and most of them are aiming to the optimal fuel economy and the driving cycle must be preknown. Thus if the actual driving condition deviates from the scheduled driving cycle, the effect of optimal results will be declined greatly. Therefore, the instantaneous optimization strategy carried out on-line is studied in this paper. The power split path and the transmission efficiency are analyzed based on a special power-split scheme and the efficiency models of the power transmitting components are established. The synthetical efficiency optimization model is established for enhancing the transmission efficiency and the fuel economy. The identification of the synthetical efficiency as the optimization objective and the constrain group are discussed emphatically. The optimization is calculated by the adaptive simulated annealing (ASA) algorithm and realized on-line by the radial basis function (RBF)-based similar models. The optimization for power distribution of the hybrid vehicle in an actual driving condition is carried out and the road test results are presented. The test results indicate that the synthetical efficiency optimization method can enhance the transmission efficiency and the fuel economy of the power-split hybrid electric vehicle (HEV) observably. Compared to the rules-based strategy the optimization strategy is optimal and achieves the approximate global optimization solution for the power distribution. The synthetical efficiency optimization solved by ASA algorithm can give attentions to both optimization quality and calculation efficiency, thus it has good application foreground for the power distribution of power-split HEV. 展开更多
关键词 hybrid electric vehicles power-split synthetical efficiency-based optimization power distribution road test
下载PDF
Method of Electric Powertrain Matching for Battery-powered Electric Cars 被引量:3
3
作者 NING Guobao XIONG Lu +1 位作者 ZHANG Lijun YU Zhuoping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期483-491,共9页
The current match method of electric powertrain still makes use of longitudinal dynamics, which can’t realize maximum capacity for on-board energy storage unit and can’t reach lowest equivalent fuel consumption as w... The current match method of electric powertrain still makes use of longitudinal dynamics, which can’t realize maximum capacity for on-board energy storage unit and can’t reach lowest equivalent fuel consumption as well. Another match method focuses on improving available space considering reasonable layout of vehicle to enlarge rated energy capacity for on-board energy storage unit, which can keep the longitudinal dynamics performance almost unchanged but can’t reach lowest fuel consumption. Considering the characteristics of driving motor, method of electric powertrain matching utilizing conventional longitudinal dynamics for driving system and cut-and-try method for energy storage system is proposed for passenger cars converted from traditional ones. Through combining the utilization of vehicle space which contributes to the on-board energy amount, vehicle longitudinal performance requirements, vehicle equivalent fuel consumption level, passive safety requirements and maximum driving range requirement together, a comprehensive optimal match method of electric powertrain for battery-powered electric vehicle is raised. In simulation, the vehicle model and match method is built in Matlab/simulink, and the Environmental Protection Agency (EPA) Urban Dynamometer Driving Schedule (UDDS) is chosen as a test condition. The simulation results show that 2.62% of regenerative energy and 2% of energy storage efficiency are increased relative to the traditional method. The research conclusions provide theoretical and practical solutions for electric powertrain matching for modern battery-powered electric vehicles especially for those converted from traditional ones, and further enhance dynamics of electric vehicles. 展开更多
关键词 battery-powered electric vehicle electric powertrain electric driving system energy storage system optimization design
下载PDF
Research on Thermal Management Control Strategy of Electric Vehicle Liquid Cooling Battery Pack
4
作者 Zhenhua Li 《Modern Electronic Technology》 2021年第2期36-40,共5页
Due to the risk of thermal runaway in the charging and discharging process of a soft packed lithium battery pack for electric vehicles,a stamping channel liquid cooling plate cooling system is designed,and then the he... Due to the risk of thermal runaway in the charging and discharging process of a soft packed lithium battery pack for electric vehicles,a stamping channel liquid cooling plate cooling system is designed,and then the heat dissipation problem of the battery pack is solved through reasonable thermal management control strategy.Using computational fluid dynamics simulation software star-CCM+,the thermal management control strategy is optimized through simulation technology,and the temperature field distribution of battery pack is obtained.Finally,an experimental platform is built,combined with experiments,the effectiveness of the thermal management control strategy of the cooling system is verified.The results show that when the battery pack is in the environment of 25℃,the maximum temperature of the cooling system can be lower than 40℃,the maximum temperature difference between all single batteries is within 5℃,and the maximum temperature difference between inlet and outlet coolant is 3℃,which can meet the heat dissipation requirements of the battery pack and prevent out of control heat generation. 展开更多
关键词 electric vehicle power battery liquid cooling system Computational fluid dynamics Analogue simulation
下载PDF
SOC estimation of lithium-ion power battery for HEV based on advanced wavelet neural network 被引量:3
5
作者 付主木 赵瑞 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期299-304,共6页
In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Bas... In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods. 展开更多
关键词 wavelet neural network state of charge(SOC) hybrid electric vehicle lithium-ion power battery
下载PDF
Study on ultracapacitor-battery hybrid power system for PHEV applications 被引量:14
6
作者 熊瑞 He Hongwen Wang Yi Zhang Xiaowei 《High Technology Letters》 EI CAS 2010年第1期23-28,共6页
For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor ... For the battery only power system is hard to meet the energy and power requirements reasonably, a hybrid power system with uhracapacitor and battery is studied. A Topology structure is analyzed that the uhracapacitor system is connected with battery pack parallel after a bidirectional DC/DC converter. The ultracapacitor, battery and the hybrid power system are modeled. For the plug-in hybrid electric vehicle (PHEV) application, the control target and control strategy of the hybrid power system are put forward. From the simulation results based on the Chinese urban driving cycle, the hybrid power system could meet the peak power requirements reasonably while the battery pack' s current is controlled in a reasonable limit which will be helpful to optimize the battery pack' s working conditions to get long cycling life and high efficiency. 展开更多
关键词 battery ULTRACAPACITOR hybrid power system plug-in hybrid electric vehicle (PHEV) simulation
下载PDF
A Comprehensive Analysis of Plug in Hybrid Electric Vehicles to Commercial Campus (V2C) 被引量:3
7
作者 Andrew D. Clarke Elham B. Makram 《Journal of Power and Energy Engineering》 2015年第1期24-36,共13页
Vehicle to grid is an emerging technology that utilizes plug in hybrid electric vehicle batteries to benefit electric utilities during times when the vehicle is parked and connected to the electric grid. In its curren... Vehicle to grid is an emerging technology that utilizes plug in hybrid electric vehicle batteries to benefit electric utilities during times when the vehicle is parked and connected to the electric grid. In its current form however, vehicle to grid implementation poses many challenges that may not be easily overcome and many existing studies neglect critical aspects such as battery cost or driving profiles. The goal of this research is to ease some of these challenges by examining a vehicle to grid scenario on a university campus, as an example of a commercial campus, based on time of use electricity rates. An analysis of this scenario is conducted on a vehicle battery as well as a stationary battery for comparison. It is found that vehicle to campus and a stationary battery both have the potential to prove economical based on battery cost and electricity rates. 展开更多
关键词 electric vehicles power Distribution ECONOMIC Analysis Vehicle to Building (V2B) battery STORAGE
下载PDF
Test Analysis of Traction Battery Peak Power 被引量:1
8
作者 李红林 张承宁 +1 位作者 孙逢春 何士娟 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期422-425,共4页
The test process of electric vehicles (EVs) traction battery peak power is analyzed in detail. Aimed at a special “traction” design of versatile battery—HORIZON~ C~2M Battery, the features are introduced. According... The test process of electric vehicles (EVs) traction battery peak power is analyzed in detail. Aimed at a special “traction” design of versatile battery—HORIZON~ C~2M Battery, the features are introduced. According to the peak power test schedule, the test parameters of HORIZON~ C~2M Battery are calculated and the charging and discharging experiments are carried out. The sustained (30 s) discharge power capability of battery at 2/3 of its open circuit voltage at each of various depths of discharge is determined. The dynamic internal resistance under peak power test is established. Considering the temperature impact during discharging, the peak power capability at each of various depths of discharge is corrected. The correctness of peak power test is validated by combining theory analysis with test results. 展开更多
关键词 test analysis traction battery peak power electric vehicle
下载PDF
State of charge and health estimation of batteries for electric vehicles applications:key issues and challenges 被引量:2
9
作者 Samarendra Pratap Singh Praveen Prakash Singh +1 位作者 Sri Niwas Singh Prabhakar Tiwari 《Global Energy Interconnection》 CAS CSCD 2021年第2期145-157,共13页
Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil f... Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions. 展开更多
关键词 electric vehicles State of Charge State of Health battery Test
下载PDF
Intelligent Vehicle Electrical Power Supply System with Central Coordinated Protection 被引量:2
10
作者 YANG Diange KONG Weiwei +1 位作者 LI Bing LIAN Xiaomin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期781-791,共11页
The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles... The current research of vehicle electrical power supply system mainly focuses on electric vehicles(EV) and hybrid electric vehicles(HEV).The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect;electrical/electronic devices(EEDs) applied in vehicles are usually directly connected with the vehicle's battery.With increasing numbers of EEDs being applied in traditional fuel vehicles,vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively.In this paper,a new vehicle electrical power supply system for traditional fuel vehicles,which accounts for all electrical/electronic devices and complex work conditions,is proposed based on a smart electrical/electronic device(SEED) system.Working as an independent intelligent electrical power supply network,the proposed system is isolated from the electrical control module and communication network,and access to the vehicle system is made through a bus interface.This results in a clean controller power supply with no electromagnetic interference.A new practical battery state of charge(So C) estimation method is also proposed to achieve more accurate So C estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel.Optimized protection methods are also used to ensure power supply safety.Experiments and tests on a traditional fuel vehicle are performed,and the results reveal that the battery So C is calculated quickly and sufficiently accurately for battery over-discharge protection.Over-current protection is achieved,and the entire vehicle's power utilization is optimized.For traditional fuel vehicles,the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture,enhancing system reliability and security. 展开更多
关键词 vehicle electrical power supply battery management vehicle electrical system traditional fuel vehicle
下载PDF
Development and Verification of the Equilibrium Strategy for Batteries in Electric Vehicles 被引量:2
11
作者 Rui Xiong Yanzhou Duan 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期22-28,共7页
The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the opera... The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the operating performance. A hybrid equilibrium strategy based on decision combing battery state-of-charge( SOC) and voltage has been proposed. The battery SOC is estimated through an improved least squares method. An equalization hardware in loop( HIL) platform has been constructed. Based on this HIL platform,equilibrium strategy has been verified under the constant-current-constant-voltage( CCCV) and dynamicstresstest( DST) conditions. Experimental results indicate that the proposed hybrid equalization strategy can achieve good balance effect and avoid the overcharge and over-discharge of the battery pack at the same time. 展开更多
关键词 electric vehicles battery pack state estimation hardware in loop equalization strategy
下载PDF
Modeling and Optimization of Heat Dissipation Structure of EV Battery Pack 被引量:1
12
作者 Xinggang Li Rui Xiong 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期29-35,共7页
In order to solve the problems of high temperature and inconsistency in the operation of electric vehicle( EV) battery pack,computational fluid dynamics( CFD) simulation method is used to simulate and optimize the... In order to solve the problems of high temperature and inconsistency in the operation of electric vehicle( EV) battery pack,computational fluid dynamics( CFD) simulation method is used to simulate and optimize the heat dissipation of battery pack. The heat generation rate at different discharge magnifications is identified by establishing the heat generation model of the battery. In the forced air cooling mode,the Fluent software is used to compare the effects of different inlet and outlet directions,inlet angles,outlet angles,outlet sizes and inlet air speeds on heat dissipation. The simulation results show that the heat dissipation effect of the structure with the inlet and outlet on the same side is better than that on the different sides; the appropriate inlet angle and outlet width can improve the uniformity of temperature field; the increase of the inlet speed can improve the heat dissipation effect significantly. Compared with the steady temperature field of the initial structure,the average temperature after structure optimization is reduced by 4. 8℃ and the temperature difference is reduced by 15. 8℃,so that the battery can work under reasonable temperature and temperature difference. 展开更多
关键词 electric vehicle(EV) battery pack cooling computational fluid dynamics(CFD) air cooling
下载PDF
Benefits of Reducing Air Emissions: Replacing Conventional with Electric Passenger Vehicles 被引量:1
13
作者 Ofira Ayalon Bernanda Flicstein Amos Shtibelman 《Journal of Environmental Protection》 2013年第10期1035-1043,共9页
The study estimated the cost of local and global air emissions, and to compare the differences between electric passenger vehicles (EV) and conventional, internal combustion engine (ICE) vehicles. The air emissions we... The study estimated the cost of local and global air emissions, and to compare the differences between electric passenger vehicles (EV) and conventional, internal combustion engine (ICE) vehicles. The air emissions were estimated for the year 2020, for Denmark, France and Israel, because of their significantly different fuel mixes to produce electricity—a high percentage of renewable energy, mainly nuclear energy and high fossil fuels, respectively. Air emissions from electricity production and conventional traffic were calculated for each country and then multiplied by the specific country’s cost of emissions. Subtracting the total cost of electricity production from the total cost of conventional transportation yields the total benefit for each of the economies studied. The environmental benefit, depending on EV penetration rates, was found to be in the range of 7.8 to 133 MEUR/year for Denmark, 94 to1948 MEUR/year for France and only 4 to 82 MEUR/year for Israel, whose energy mix is the most polluting. Our analysis also shows higher potential benefits when replacing passenger car fleets comprising a high percentage of diesel cars with EVs, as well as in highly populated areas. In addition, we quantified the differences between EVs with fixed batteries and the new switch able battery concept (EASYBAT), as part of the EU 7th Framework Program me. The additional electricity demands for the EASYBAT concept are negligible, and therefore, do not change the overall conclusion that the cleaner the electricity energy mix and the higher the penetration of EVs, the higher the environmental benefits achieved. 展开更多
关键词 Air Emissions electric vehicles PASSENGER Car Externalities power Generation Externalities battery-Switch EASYBAT EU FP7
下载PDF
Analysis of Hybrid Rechargeable Energy Storage Systems in Series Plug-In Hybrid Electric Vehicles Based on Simulations
14
作者 Karel Fleurbaey Noshin Omar +2 位作者 Mohamed El Baghdadi Jean-Marc Timmermans Joeri Van Mierlo 《Energy and Power Engineering》 2014年第8期195-211,共17页
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba... In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system. 展开更多
关键词 Plug-In HYBRID electric Vehicle HYBRID ENERGY Storage System HIGH ENERGY battery HIGH power battery electrical DOUBLE-LAYER CAPACITOR Lithium-Ion CAPACITOR
下载PDF
Key Technologies and Prospects for Electric Vehicles Within Emerging Power Systems: Insights from Five Aspects 被引量:1
15
作者 Yalun Li Minggao Ouyang +5 位作者 C.C.Chan Xueliang Sun Yonghua Song Wei Cai Yilin Xie Yuqiong Mao 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期439-447,共9页
The energy revolution requires coordination in energy consumption, supply, storage and institutional systems.Renewable energy generation technologies, along with their associated costs, are already fully equipped for ... The energy revolution requires coordination in energy consumption, supply, storage and institutional systems.Renewable energy generation technologies, along with their associated costs, are already fully equipped for large-scale promotion.However, energy storage remains a bottleneck, and solutions areneeded through the use of electric vehicles, which traditionallyplay the role of energy consumption in power systems. Toclarify the key technologies and institutions that support EVsas terminals for energy use, storage, and feedback, the CSEEJPES forum assembled renowned experts and scholars in relevantfields to deliver keynote reports and engage in discussions ontopics such as vehicle–grid integration technology, advancedsolid-state battery technology, high-performance electric motortechnology, and institutional innovation in the industry chain.These experts also provided prospects for energy storage andutilization technologies capable of decarbonizing new powersystems. 展开更多
关键词 electric vehicles engineering philosophy highpower density motor new power system solid state batteries vehicle grid integration.
原文传递
动力电池PACK状态监测系统设计与实现 被引量:10
16
作者 王晓辉 徐自强 +2 位作者 林金明 吴孟强 李元勋 《电源技术》 CAS 北大核心 2019年第6期1039-1041,1046,共4页
针对电动汽车动力电池PACK,设计并实现了一种基于STM32F103ZET6芯片的状态监测系统。采用模块化的思想设计了系统的硬件电路,对器件型号选择和参数确定做了详细的说明;采用自顶而下的方法编写了系统软件程序,并对软件设计做了具体的阐... 针对电动汽车动力电池PACK,设计并实现了一种基于STM32F103ZET6芯片的状态监测系统。采用模块化的思想设计了系统的硬件电路,对器件型号选择和参数确定做了详细的说明;采用自顶而下的方法编写了系统软件程序,并对软件设计做了具体的阐述。实验结果表明,该系统可以实时、准确地监测电池单体电压信息和温度信息,单体电压最大误差≤1.5 mV,温度误差≤0.5 ℃,远优于电动汽车电池状态参数测量精度要求的国家标准,保证动力电池的安全使用和高效利用。 展开更多
关键词 电动汽车 动力电池 状态监测 模块化 单体电池电压 温度
下载PDF
A model-based driving cycle test procedure of electric vehicle batteries 被引量:2
17
作者 李勇 Wang Lifang +1 位作者 Liao Chenglin Wang Liye 《High Technology Letters》 EI CAS 2014年第3期308-314,共7页
The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test ... The battery test methods are the key issues to investigate the energy-storage characteristics and dynamic characteristics of electric vehicle(EV) batteries.In this paper,the research advances of existing battery test methods as well as driving cycles are reviewed.An electric vehicle model that consists of EV dynamics model,battery model and electric motor model is built.The dynamic characteristics of the battery in frequency domain are analyzed.Based on the EV model and the frequency domain characteristics of the battery,a driving cycle test procedure of EV battery is proposed.The battery test procedure is able to reflect the real-world characteristics of EV batteries,and can be used as a universal EV battery test method. 展开更多
关键词 battery test methods lithium-ion battery electric vehicle (EV) model driving cycles
下载PDF
Design of New-generation Electric Vehicle Terminal
18
作者 Lei Li Xin Lu +2 位作者 Jiasheng He Zhe Sun Guang Yang 《Energy and Power Engineering》 2013年第4期1362-1366,共5页
EVT (electric vehicle terminal) has played an important role in EV (electric vehicle) operation. Based on research status of vehicle terminal, EVT brought about in the future should have the following functions: (1) f... EVT (electric vehicle terminal) has played an important role in EV (electric vehicle) operation. Based on research status of vehicle terminal, EVT brought about in the future should have the following functions: (1) fundamental functions, including real-time monitoring of batteries, guidance in station, position guidance of charging/battery-swap infrastructures, communication with OMS (operation and management system), and so on;(2) advanced functions, including but not limited to multi-media entertainment, subscribing and payment for charging/battery-swap, identification, and safety control during driving. Complete design of new-generation EVT in software structure and hardware architecture is proposed;a new idea of the application of EVT in EV industry is put forward. 展开更多
关键词 EV (electric vehicle) power battery EVT (electric VEHICLE terminal)
下载PDF
Analysis of the Impact of Different PEV Battery Chargers during Faults
19
作者 Andrew D. Clarke Himanshu A. Bihani +1 位作者 Elham B. Makram Keith A. Corzine 《Journal of Power and Energy Engineering》 2014年第8期31-44,共14页
With a high penetration of Plug-In Electric Vehicles (PEVs) in the electric grid, utilities will have to face the challenges related to them. Considerable research is being done to study and mitigate the impact of PEV... With a high penetration of Plug-In Electric Vehicles (PEVs) in the electric grid, utilities will have to face the challenges related to them. Considerable research is being done to study and mitigate the impact of PEVs on the electric grid and devise methodologies to utilize them for energy storage and distributed generation. In this paper, the impact of PEVs in a smart car park, placed in an unbalanced distribution system, during a Single Line to Ground fault with auto-recloser operation is studied. Level-2, bidirectional battery chargers with Current Controlled and Voltage Controlled Voltage Source Converters are modeled for the battery charging systems of the PEVs. A smart car park, with 16 vehicles connected to each of the three phases is simulated at one of the buses in the IEEE 13 Bus Test Feeder. The impacts observed during the fault are analyzed and a method to mitigate them is suggested. 展开更多
关键词 electric vehicles battery Chargers VOLTAGE Source CONVERTERS Current CONTROL VOLTAGE CONTROL power Distribution FAULTS
下载PDF
NiCo_(2)O_(4)//GO非对称超级电容器电动汽车动力系统应用仿真 被引量:1
20
作者 郭冠伦 王钊昕 +1 位作者 田峰 黄斌 《西南大学学报(自然科学版)》 CSCD 北大核心 2024年第2期170-182,共13页
将制备的NiCo_(2)O_(4)电极进行电化学性能测试,结果表明,NiCo_(2)O_(4)电极活性材料通过准可逆的氧化还原反应进行储能,表现出良好的电化学性能.进而使用Simulink仿真模拟了非对称超级电容器单体的放电过程,并使用AVL CRUISE仿真计算... 将制备的NiCo_(2)O_(4)电极进行电化学性能测试,结果表明,NiCo_(2)O_(4)电极活性材料通过准可逆的氧化还原反应进行储能,表现出良好的电化学性能.进而使用Simulink仿真模拟了非对称超级电容器单体的放电过程,并使用AVL CRUISE仿真计算了超级电容器-锂离子电池复合储能系统的电动汽车行驶过程.结果表明,汽车在WLTC循环工况下的最大电池功率为38.0 kW,行驶时间为4.9 h,续航里程为224.4 km,相比单独的锂离子电池储能系统最大电池功率减小了31.3%,续航里程提高了11.4%.超级电容器对复合储能系统的电动汽车起到了平衡电池功率和提高续航里程的作用. 展开更多
关键词 非对称超级电容器 钴酸镍 电化学测试 电动汽车 储能 剩余电池容量
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部