For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ...For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.展开更多
Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consu...Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consumption of energy, low output harmonics and inexpensive circuit. In this paper, a new structure of multilevel inverter with reduced number of switches is proposed for electric vehicle applications. It consists of an H-bridge and an inverter in each phase which produces multilevel voltage by switching the dc voltage sources in series. As the number of switches are reduced, both conduction and switching losses will be de-creased, which leads to increase the efficiency of converter. The size and power consumption of driving cir-cuits are also reduced. The proposed three phase inverter can produces more number of voltage levels in the same number of the voltage source and reduced number of switches compared to the conventional inverters. This structure minimizes the total harmonic distortion (THD) of the output voltage waveforms. The structure of proposed multilevel inverter, modulation method, switching losses, THD calculation and simulation re-sults with PSCAD/EMTDC software are shown in this paper.展开更多
Along with the rapid growth in electric vehicle(EV)market,higher power density and more efficient motor drive inverters are required.It is well known that silicon carbide(SiC)has advantages of high temperature,high ef...Along with the rapid growth in electric vehicle(EV)market,higher power density and more efficient motor drive inverters are required.It is well known that silicon carbide(SiC)has advantages of high temperature,high efficiency and high switching frequency.It is believed that the appropriate utilization of these merits can pave the way to ultra-high power density inverters.This paper presents issues about SiC chip’s current-carrying capability enhancement which is crucial for a compact inverter of tens and hundreds of kilowatts.Technical approaches towards ultra-high power density EV inverter including SiC module packaging,dc-link capacitor function analysis and system level integration are discussed.Different PWM algorithms which may improve efficiency and help to reduce the inverter volume are also studied.展开更多
The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the t...The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.展开更多
This article describes an Internet based laboratory (NETLAB) developed at Zhejiang University for electrical engi- neering education. A key feature of the project is the use of real experimental systems rather than si...This article describes an Internet based laboratory (NETLAB) developed at Zhejiang University for electrical engi- neering education. A key feature of the project is the use of real experimental systems rather than simulation or virtual reality. NELTAB provides remote access to a wide variety of experiments, including not only basic electrical and electronic experiments but also many innovative control experiments. Students can effectively use the laboratory at any time and from anywhere. NETLAB has been in operation since July 2003.展开更多
The effects of parasitic capacitance in induction motor system are unnoticed when it is fed from the AC line, but they are obvious when supplied directly from a PWM inverter. Consequently, many parasitic problems occu...The effects of parasitic capacitance in induction motor system are unnoticed when it is fed from the AC line, but they are obvious when supplied directly from a PWM inverter. Consequently, many parasitic problems occur, such as motor to earth leakage current, bearing current, incoming line current distortion and uneven distribution of electrical stresses along the winding. On the basis of the uniform transmission line principle, a complete equivalent circuit of the PWM inverter fed motor system is presented, based on which all the capacitive parasitic problems mentioned above are analyzed and simulated by means of PSPICE. All the results are consistent with the existing ones.展开更多
VFDs (variable frequency drives) are an integral part of many industrial plants and stations. Reliable operation and maintenance of these drives is vital to ensure sustained plant operation and availability. Underst...VFDs (variable frequency drives) are an integral part of many industrial plants and stations. Reliable operation and maintenance of these drives is vital to ensure sustained plant operation and availability. Understanding of the principles of operation of VFD systems as well as knowledge about their required operating environment is necessary for all operating personnel. Many times the operating personnel do not get involved with different technical issues until a complete failure has occurred. Hence, the awareness of the most dominant failure causes has a significant impact on assisting operators to avoid catastrophic failures and tremendous economic losses due to VFD shutdown. Proper plant design, accurate monitoring and data logging, following manufacturer preventive maintenance schedule, and choosing qualified team of operators can be the key to an efficient operation and a long lifetime for any VFD system. In this paper, we have analyzed the electrical and non-electrical causes of VFD failures based on a case study of a typical medium voltage VFD pumping station. Finally, recommendations are given from field analysis and observations.展开更多
In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised Germa...In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised German medium voltage directives issued in 2009, new requirements for PV inverters have been established internationally. At Fraunhofer ISE's Inverter Laboratory, approximately 25 large PV inverters with a nominal power of up to 880 kVA have been characterized in the past three years. In this period, the focus of many inverter manufacturers has begun to shift from traditional European markets towards an international perspective. Therefore, experiences with numerous different grid codes have been gained by our team. This work summarizes the similarities and differences between these grid codes. Additionally, several requirements that have proved to be critical will be examined. Finally, the adequacy of these grid codes to guarantee the safe and reliable operation of electrical grids is discussed.展开更多
Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches ba...Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles.展开更多
The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is ...The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is for a series hybrid vehicle powered by electric storage batteries charged by solar batteries. In the first part of the paper the designing of the electric storage batteries and of the photoelectric system is presented. In the second part of the paper some aspects regarding the designing of the induction motor are presented. Then some aspects concerning the voltage source inverter designing are exposed.展开更多
In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s beha...In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s behaviors in the real-time market for less economic loss caused by the fluctuations of wind power.The inverter AC,as a typical demand response resource,is constructed as a power type battery model(PTBM)and a capacity type battery model(CTBM)according to the different control methods,which are expressed through a circuit model and mathematical model to describe the energy storage characteristics of ACs.Moreover,the comparisons between the PTBM and CTBM are given analytically by their response speed,power&energy capacity and the cost of control,which will be helpful to guide the associated operators to choose the appropriate models to take part in demand response.Considering that the wind generation fluctuates frequently and greatly,the PTBM is chosen to take part of the demand response for output optimizing of the wind generation.The simulation results demonstrate that PTBMs can work in the way of conventional batteries(CBs)to optimize wind generation in the real-time market.展开更多
基金funded by Tsinghua University-Weichai Power Intelligent Manufacturing Joint Research Institute (WCDL-GH-2022-0131)。
文摘For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.
文摘Both Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) need a traction motor and a power in-verter to drive the traction motor. The requirements for the power inverter include high peak power, opti-mum consumption of energy, low output harmonics and inexpensive circuit. In this paper, a new structure of multilevel inverter with reduced number of switches is proposed for electric vehicle applications. It consists of an H-bridge and an inverter in each phase which produces multilevel voltage by switching the dc voltage sources in series. As the number of switches are reduced, both conduction and switching losses will be de-creased, which leads to increase the efficiency of converter. The size and power consumption of driving cir-cuits are also reduced. The proposed three phase inverter can produces more number of voltage levels in the same number of the voltage source and reduced number of switches compared to the conventional inverters. This structure minimizes the total harmonic distortion (THD) of the output voltage waveforms. The structure of proposed multilevel inverter, modulation method, switching losses, THD calculation and simulation re-sults with PSCAD/EMTDC software are shown in this paper.
基金This work was supported by National Key R&D Program of China(No.2016YFB0100600)。
文摘Along with the rapid growth in electric vehicle(EV)market,higher power density and more efficient motor drive inverters are required.It is well known that silicon carbide(SiC)has advantages of high temperature,high efficiency and high switching frequency.It is believed that the appropriate utilization of these merits can pave the way to ultra-high power density inverters.This paper presents issues about SiC chip’s current-carrying capability enhancement which is crucial for a compact inverter of tens and hundreds of kilowatts.Technical approaches towards ultra-high power density EV inverter including SiC module packaging,dc-link capacitor function analysis and system level integration are discussed.Different PWM algorithms which may improve efficiency and help to reduce the inverter volume are also studied.
文摘The principle of single to single phase matrix electric power conversioin is further studied and the conversioin switch function is introduced into conventional rectifier inverter, thus a general character of the two conversion techniques is discovered. It is characteristic of the switch functiion to follow mains voltage distortion and mains frequency drift. By utilizing the merit, unidirectional switch duty rations of the inverter follow the variation of DC link voltage automatically, thus the size of DC link electrolytic capacitor can be reduced considerably, bringing about improved mains side power factor. Corresponding topologies and theoretical and theoretical derivations are given, and so are the simulation results, based on which it is confirmed that the single to single phase matrix conversion technique is potentially useful in large scale production, and the introduction of switch function can yield good economic returns.
基金supported by National Natural Science Foundation of China(61473070,61433004)Fundamental Research Funds for the Central Universities(N130504002)SAPI Fundamental Research Funds(2013ZCX01)
基金Project supported by the Promising Project Foundation of Zheji-ang University, China
文摘This article describes an Internet based laboratory (NETLAB) developed at Zhejiang University for electrical engi- neering education. A key feature of the project is the use of real experimental systems rather than simulation or virtual reality. NELTAB provides remote access to a wide variety of experiments, including not only basic electrical and electronic experiments but also many innovative control experiments. Students can effectively use the laboratory at any time and from anywhere. NETLAB has been in operation since July 2003.
文摘The effects of parasitic capacitance in induction motor system are unnoticed when it is fed from the AC line, but they are obvious when supplied directly from a PWM inverter. Consequently, many parasitic problems occur, such as motor to earth leakage current, bearing current, incoming line current distortion and uneven distribution of electrical stresses along the winding. On the basis of the uniform transmission line principle, a complete equivalent circuit of the PWM inverter fed motor system is presented, based on which all the capacitive parasitic problems mentioned above are analyzed and simulated by means of PSPICE. All the results are consistent with the existing ones.
文摘VFDs (variable frequency drives) are an integral part of many industrial plants and stations. Reliable operation and maintenance of these drives is vital to ensure sustained plant operation and availability. Understanding of the principles of operation of VFD systems as well as knowledge about their required operating environment is necessary for all operating personnel. Many times the operating personnel do not get involved with different technical issues until a complete failure has occurred. Hence, the awareness of the most dominant failure causes has a significant impact on assisting operators to avoid catastrophic failures and tremendous economic losses due to VFD shutdown. Proper plant design, accurate monitoring and data logging, following manufacturer preventive maintenance schedule, and choosing qualified team of operators can be the key to an efficient operation and a long lifetime for any VFD system. In this paper, we have analyzed the electrical and non-electrical causes of VFD failures based on a case study of a typical medium voltage VFD pumping station. Finally, recommendations are given from field analysis and observations.
文摘In many electrical grids worldwide, the rising amount of installed PV (photovoltaic) power entails a considerable influence of PV systems on grid quality and stability. Consequently, in the wake of the revised German medium voltage directives issued in 2009, new requirements for PV inverters have been established internationally. At Fraunhofer ISE's Inverter Laboratory, approximately 25 large PV inverters with a nominal power of up to 880 kVA have been characterized in the past three years. In this period, the focus of many inverter manufacturers has begun to shift from traditional European markets towards an international perspective. Therefore, experiences with numerous different grid codes have been gained by our team. This work summarizes the similarities and differences between these grid codes. Additionally, several requirements that have proved to be critical will be examined. Finally, the adequacy of these grid codes to guarantee the safe and reliable operation of electrical grids is discussed.
文摘Electrification of vehicles intensifies their cooling demands due to the requirements of maintaining electronics/electrical systems below their maximum temperature threshold.In this paper,passive cooling approaches based on heat pipes have been considered for the thermal management of electric vehicle(EV)traction systems including battery,inverter,and motor.For the battery,a heat pipe base plate is used to provide high heat removal(180 W per module)and better thermal uniformity(<5°C)for the battery modules in a pack while downsizing the liquid cold plate system.In the case of Inverter,two phase cooling system based on heat pipes was designed to handle hot spots arising from high heat flux(∼100 W/cm2)–for liquid cooling and provide location independence and a dedicated cooling approach-for air cooling.For EV motors,heat pipebased systems are explored for stator and rotor cooling.The paper also provides a glimpse of development on high-performance microchannel-based cold plate technologies based on parallel fins and multi-layer 3D stacked structures.Specifically,this work extends the concept of hybridization of two-phase technology based on heat pipes with single-phase technology,predominately based on liquid cooling,to extend performance,functionalities,and operational regime of cooling solutions for components of EV drive trains.In summary,heat pipes will help to improve and extend the overall reliability,performance,and safety of air and liquid cooling systems in electric vehicles.
文摘The paper deals with the designing of an electric drive system used for hybrid electric vehicles. The driving system is realized with an induction motor and a voltage source inverter. Specifically, the application is for a series hybrid vehicle powered by electric storage batteries charged by solar batteries. In the first part of the paper the designing of the electric storage batteries and of the photoelectric system is presented. In the second part of the paper some aspects regarding the designing of the induction motor are presented. Then some aspects concerning the voltage source inverter designing are exposed.
基金This work was supported in part by the National High Technology Research and Development Program of China(863 Program Grant No.2015AA050401)and in part by the National Science Foundation of China(Grant No.51577029)and the State Grid Corporation of China Program Research on Demand Response Mechanism and Implementation Technology facing the Electricity Marketization,and the Shanghai Power Company Project(Grant No.52096016000J).
文摘In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s behaviors in the real-time market for less economic loss caused by the fluctuations of wind power.The inverter AC,as a typical demand response resource,is constructed as a power type battery model(PTBM)and a capacity type battery model(CTBM)according to the different control methods,which are expressed through a circuit model and mathematical model to describe the energy storage characteristics of ACs.Moreover,the comparisons between the PTBM and CTBM are given analytically by their response speed,power&energy capacity and the cost of control,which will be helpful to guide the associated operators to choose the appropriate models to take part in demand response.Considering that the wind generation fluctuates frequently and greatly,the PTBM is chosen to take part of the demand response for output optimizing of the wind generation.The simulation results demonstrate that PTBMs can work in the way of conventional batteries(CBs)to optimize wind generation in the real-time market.