期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Pyrolysis of Huadian oil shale by electrical heating on different heating rates 被引量:2
1
作者 G.Roland Nguimbi 《Global Geology》 2012年第2期120-125,共6页
The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -... The electrical heating experiments on oil shale sample from Huadian of Jilin were carried out by the pyrolysis method at three different heating rate 2℃/min, 5 ℃/min and 10 ℃/min in the temperature range of 30℃ -750℃. Heating rate 2 ℃/rain is considered low, while intermediate one covers the range 5 ℃/min and high heating rate is 10℃/min. The controlling parameters studied were the final pyrolysis temperature and the influence of the heating rate as well as type. The heating rate has an important effect on the pyrolysis of oil shale and the amount of residual carbon obtained therefore. It is found that increasing the heating rate and py- rolysis temperature also increases the production of oil and the total weight loss. Higher heating rates resulted in higher rates of accumulation. The rate of oil and water collection passed through the maximum of different heat- ing rates at different pyrolysis temperatures. Heating rate affected density, oil conversion and oil yield. 展开更多
关键词 oil shale PYROLYSIS electrical heating Huadian Jilin
下载PDF
Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria
2
作者 Xiaoyan Liu Ting Zhang +8 位作者 Mengchen Xu Yang Li Haiqing Wang Yuke Chen Xuzihan Zhang Zenan Wang Xiaoyan Li Weijia Zhou Hong Liu 《Nano Research》 SCIE EI CSCD 2024年第3期1578-1584,共7页
Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there ... Vapor deposition and three-dimensional(3D)printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature.Therefore,there are still some challenges in fabricating metal films in template-free and normal temperature environment.In this work,we report a flexible and rapid laser metal transfer(LMT)technique for fabricating the various metal films(Cu,Ni,Sn,Al,Fe,and Ag)with different patterns without templates on arbitrary substrates(glass,polyimide(PI)films,and aluminum nitride(AlN)ceramic).Especially,the obtained transparent conductive glass displays high transmittance(more than 90%)and adjustable resistances(≈5Ω).According to the Joule effect,the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280℃ at 2 V in a short time(≈60 s)and remains stable at 120℃ over 12 h.At last,the multifunctional glass with Cu patterns also shows excellent bactericidal activity(≈95%).This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices. 展开更多
关键词 laser metal transfer(LMT) transparent conductive glass electrical heating copper pattern ANTIBACTERIAL
原文传递
Experimental study of low-temperature electrical radiant floor heating system
3
作者 孔祥强 李瑛 胡松涛 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期287-291,共5页
To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and buil... To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm. 展开更多
关键词 electrical radiant floor heating floor structure cable distance thermal performance
下载PDF
COUPLED ELECTRICAL-THERMAL-MECHANICAL ANALYSIS FOR ELECTRICAL/LASER HEATING ASSISTED BLANKING
4
作者 PENG Xianghe QIN Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期294-299,共6页
A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part... A coupled electrical-thermal-mechanical analysis is conducted for electrical/laser heating assisted blanking. Two novel localized-heating methods, electrical heating and laser-heating, recently proposed for small-part blanking, are investigated with FE simulations. Results show that electrical heating would result in an advantageous distribution of temperature in a 316 stainless steel work-material. A desired temperature distribution may also be achievable for a copper work-material, if laser beam is used. Both electrical heating and laser-heating enable to reduce the blanking force and increase the aspect ratio achievable by blanking. The simulation also demonstrates that both electrical heating and laser-heating can result in desired temperature-distributions at sufficiently high heating-rates, ease of implementation and application. Comparatively, electrical heating could generate more favorable temperature distribution for small-part blanking. 展开更多
关键词 BLANKING electrical heating Laser-heating
下载PDF
Influence of heat loss through probe electrical leads on thermal conductivity measurement with TPS method 被引量:3
5
作者 WANG Yu-wei LI Yan-ning 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期9-15,共7页
The transient plane source(TPS)method is developed recently to measure the thermal conductivity of materials.In the measurement,the heating power is influenced by the heat which is transferred via the probe electrical... The transient plane source(TPS)method is developed recently to measure the thermal conductivity of materials.In the measurement,the heating power is influenced by the heat which is transferred via the probe electrical leads.This fact further influences the measurement accuracy of thermal conductivity.To solve this problem,the influence of heat loss through the electrical leads on the heating power is studied theoretically.The mathematical formula of heat loss is deduced,and the corresponding correction model is presented.A series of measurement experiments on different materials have been conducted by using the hot disk thermal constant analyzer.The results show that the influence of the heat loss on the measurement is sensitive to different test materials and probes with different sizes.When the thermal conductivity of the material is greater than 0.2 W/(m·K),the influence of the heat loss is less than 0.16%,which can be ignored.As to the lower thermal conductivity materials,it is necessary to compensate the heat loss through the electrical leads,and the accuracy of thermal conductivity measurement can be effectively improved. 展开更多
关键词 transient plane source(TPS)method thermal conductivity heat loss through electrical leads heating power
下载PDF
Study on the Pyrolytic Carbon Generated by the Electric Heating CVD Method 被引量:1
6
作者 徐先锋 欧阳甜 +1 位作者 ZENG Lingsheng CHAI Lingzhi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期409-413,共5页
A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon sour... A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment. 展开更多
关键词 C/C composite materials electric heating method chemical vapor deposition pyrolytic carbon
下载PDF
Catalytic CVD Growth of Carbon Nanotubes by Electric Heating Method
7
作者 徐先锋 欧阳甜 +3 位作者 CHAI Lingzhi ZENG Lingsheng LI Gang CHEN Yue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期136-139,共4页
Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loa... Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time. 展开更多
关键词 electric heating method catalytic CVD nickel plating carbon nanotubes
下载PDF
Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump
8
作者 Jingxiao Han Chuanzhao Zhang +5 位作者 LuWang ZengjunChang Qing Zhao Ying Shi JiaruiWu Xiangfei Kong 《Energy Engineering》 EI 2023年第9期1991-2011,共21页
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e... For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases. 展开更多
关键词 Electric heat storage solar energy air source heat pump multi-objective optimization method LOCH
下载PDF
Effects of nano-metal oxide additives on ignition and combustion properties of MICs-boron rich fuels
9
作者 Liang Hu Danyang Liu +5 位作者 Kun Yang Jianying Lu Chao Shi Jianyu Wang Xinhang Liu Lang Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期157-167,共11页
Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit ... Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants. 展开更多
关键词 Boron-rich fuel Mechanical ball milling electrically heated filament Laser-induced combustion
下载PDF
Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics
10
作者 Hang Cui Hongbo Ren +3 位作者 Qiong Wu Hang Lv Qifen Li Weisheng Zhou 《Energy Engineering》 EI 2024年第3期581-601,共21页
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau... Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method. 展开更多
关键词 Cascading fault degradation characteristics integrated heat and electricity system multi-energy flow
下载PDF
Research on Performance Optimization of Phase Change Thermal Storage Electric Heating Device
11
作者 Weibo Zheng 《Journal of Power and Energy Engineering》 2024年第11期153-162,共10页
At present, the main heating method for reducing crude oil viscosity is electric heating, and the all-day electric heating method has the problems of high energy consumption and high cost. In order to meet the needs o... At present, the main heating method for reducing crude oil viscosity is electric heating, and the all-day electric heating method has the problems of high energy consumption and high cost. In order to meet the needs of environmental protection and industrial production, a new type of phase change thermal storage electric heating device was designed by combining the crude oil viscosity reduction heating method with valley price and phase change materials. The results indicate that as the inlet flow rate of the working fluid increases, the outlet temperature continuously decreases. And when the outlet temperature rises to 10?C, the inlet flow rate of the device can meet the flow range of 1.413 - 2.120 m3/h. At the same time, the addition of foam nickel makes the internal temperature of PCM more uniform, and the internal temperature of PCM decreases with the decrease of porosity of foam metal. By increasing the number of electric heating rods and reducing the power of individual electric heating rods, the structure of the device was optimized to significantly improve local high-temperature phenomena. The use of this device can maintain high heat exchange efficiency and reduce production costs. 展开更多
关键词 Crude Oil Viscosity Reduction Phase Change Thermal Storage Electric heating Valley Electricity Price
下载PDF
Electrical Conductivity,Oil Absorption and Electric Heating of Carbon Black-modified Carbon Nanofibers 被引量:3
12
作者 HUANG Hedong GUO Zeyu +2 位作者 YANG Pengyan CHEN Peng Wu Jie 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2021年第3期541-548,共8页
Carbon-black-modified carbon nanofibers were prepared by electrospinning,and the effects of the carbon black content and processing temperature on the physical and chemical properties of the resulting composites were ... Carbon-black-modified carbon nanofibers were prepared by electrospinning,and the effects of the carbon black content and processing temperature on the physical and chemical properties of the resulting composites were investigated.The results showed that the conductivity of carbon-black-modified nanofibers increased with the carbon black content.The addition of carbon black in a 20%mass ratio increased the conductivity of the composite(0.75 S/cm)by 230%compared with the undoped nano-fiber(2.47 S/cm),while the adulteration with 5%CB allowed the preservation of the mechanical properties of the composites.The fabricated carbon-black/carbon-nanocomposite fibers exhibited excellent oil absorption and electrothermal conversion performance.Furthermore,the conductivity and oil absorption capacity increased with increasing carbonization temperature.With a carbonization temperature of 1000℃(5%carbon black),the voltage was 31 V,the current was 0.66 A,and the surface temperature of the composite reached 234.1℃.The overall enhancement in physical properties upon the addition of even low amounts of carbon black makes these composites advantageous for future industrial applications. 展开更多
关键词 Carbon black Carbon nanofiber ELECTROSPINNING CONDUCTIVITY Oil absorption Electric heating film
原文传递
Optimal Operation of Integrated Heat and Electricity Systems:A Tightening McCormick Approach 被引量:8
13
作者 Lirong Deng Hongbin Sun +3 位作者 Baoju Li Yong Sun Tianshu Yang Xuan Zhang 《Engineering》 SCIE EI 2021年第8期1076-1086,共11页
Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combi... Combined heat and electricity operation with variable mass flow rates promotes flexibility,economy,and sustainability through synergies between electric power systems(EPSs)and district heating systems(DHSs).Such combined operation presents a highly nonlinear and nonconvex optimization problem,mainly due to the bilinear terms in the heat flow model—that is,the product of the mass flow rate and the nodal temperature.Existing methods,such as nonlinear optimization,generalized Benders decomposition,and convex relaxation,still present challenges in achieving a satisfactory performance in terms of solution quality and computational efficiency.To resolve this problem,we herein first reformulate the district heating network model through an equivalent transformation and variable substitution.The reformulated model has only one set of nonconvex constraints with reduced bilinear terms,and the remaining constraints are linear.Such a reformulation not only ensures optimality,but also accelerates the solving process.To relax the remaining bilinear constraints,we then apply McCormick envelopes and obtain an objective lower bound of the reformulated model.To improve the quality of the McCormick relaxation,we employ a piecewise McCormick technique that partitions the domain of one of the variables of the bilinear terms into several disjoint regions in order to derive strengthened lower and upper bounds of the partitioned variables.We propose a heuristic tightening method to further constrict the strengthened bounds derived from the piecewise McCormick technique and recover a nearby feasible solution.Case studies show that,compared with the interior point method and the method implemented in a global bilinear solver,the proposed tightening McCormick method quickly solves the heat–electricity operation problem with an acceptable feasibility check and optimality. 展开更多
关键词 Integrated heat and electricity system Convex relaxation Operation McCormick envelopes
下载PDF
New Heat Treatment Technology for Grain Refining of Structural Steel 被引量:2
14
作者 Lü Bo ZHANG Fu-cheng +1 位作者 CAO Guo-hua ZHANG Ji-ming 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第6期49-53,共5页
The application of electrical contact heating (ECH) in austenitic grain refining of ultra-pure 42CrMoVNb steel was introduced. The ECH equipment was designed to reach uniform heating of uniform heat transfer in the ... The application of electrical contact heating (ECH) in austenitic grain refining of ultra-pure 42CrMoVNb steel was introduced. The ECH equipment was designed to reach uniform heating of uniform heat transfer in the sample. The 42CrMoVNb steel treated possesses uniform microstructure with an average austenite grain size of 1.4 μm, higher strength (1 538 MPa) and impact toughness (81J/cm^2). 展开更多
关键词 electrical contact heating medium carbon alloy steel ultrafine grain 42CrMoVNb
下载PDF
Intermetallic Evolution of Al–Si-Coated Hot Stamping Steel During Modified Electrically Assisted Rapid Heating 被引量:2
15
作者 Kieu-Anh Dinh Sung-Tae Hong +2 位作者 Tien Viet Luu Moon-Jo Kim Heung Nam Han 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第12期1327-1333,共7页
Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid... Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid heating, a continuous electric current for a suitable duration is applied to a specimen to heat it to a temperature slightly below the melting temperature of the coating. The temperature of the specimen is then kept constant for a specified dwell time. The result of the microstructural analysis shows that the modified EA rapid heating could effectively increase the thickness of the intermetallic layer between the coating and steel substrate much faster than conventional furnace heating and induction heating. The effectiveness of EA rapid heating may be due to the athermal effect of the electric current on the mobility of atoms, in addition to the well-known resistance heating effect. EA rapid heating also provides a technical advantage in that partial austenization can be easily achieved by properly placing the electrodes, as demonstrated in the present study. 展开更多
关键词 Hot stamping electrically assisted rapid heating Partial austenization Al–Si-coated hot stamping steel
原文传递
Combination of steam-enhanced extraction and electrical resistance heating for efficient remediation of perchloroethylene-contaminated soil:Coupling merits and energy consumption 被引量:1
16
作者 Rui Yue Zhikang Chen +5 位作者 Liujun Liu Lipu Yin Yicheng Qiu Xianhui Wang Zhicheng Wang Xuhui Mao 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第11期249-260,共12页
In situ thermal desorption(ISTD)technology effectively remediates soil contaminated by dense nonaqueous phase liquids(DNAPLs).However,more efforts are required to minimize the energy consumption of ISTD technology.Thi... In situ thermal desorption(ISTD)technology effectively remediates soil contaminated by dense nonaqueous phase liquids(DNAPLs).However,more efforts are required to minimize the energy consumption of ISTD technology.This study developed a laboratory-scale experimental device to explore the coupling merits of two traditional desorption technologies:steam-enhanced extraction(SEE)and electrical resistance heating(ERH).The results showed that injecting high-density steam(>1 g/min)into loam or clay with relatively high moisture content(>13.3%)could fracture the soil matrix and lead to the occurrence of the preferential flow of steam.For ERH alone,the electrical resistance and soil moisture loss were critical factors influencing heating power.When ERH and SEE were combined,preheating soil by ERH could increase soil permeability,effectively alleviating the problem of preferential flow of SEE.Meanwhile,steam injection heated the soil and provided moisture for maintaining soil electrical conductivity,thereby ensuring power stability in the ERH process.Compared with ERH alone(8 V/cm)and SEE alone(1 g/min steam),the energy consumption of combined method in remediating perchloroethylene-contaminated soil was reduced by 39.3%and 52.9%,respectively.These findings indicate that the combined method is more favorable than ERH or SEE alone for remediating DNAPL-contaminated subsurfaces when considering ISTD technology. 展开更多
关键词 Steam-enhanced extraction electrical resistance heating Dense nonaqueous phase liquid Soil remediation Energy consumption
原文传递
Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy 被引量:3
17
作者 S.Engin U.Byük +1 位作者 H.Kaya N.Maraslι 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期659-664,共6页
Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spac... Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spacing were measured from transverse sections of the samples.The dependences of the eutectic spacing and undercooling on growth rate are determined as λ=9.21V-0.53 and ΔT=0.0245V0.53,respectively.The results obtained in this work were compared with the Jackson-Hunt eutectic theory and the similar experimental results in the literature.Microhardness of directionally solidified samples was also measured by using a microhardness test device.The dependency of the microhardness on growth rate is found as Hv=115.64V0.13.Afterwards,the electrical resistivity (r) of the casting alloy changes from 40×10-9 to 108×10-9 Ω·m with the temperature rising in the range of 300-630 K.The enthalpy of fusion (ΔH) and specific heat (Cp) for the Zn-Al eutectic alloy are calculated to be 113.37 J/g and 0.309 J/(g·K),respectively by means of differential scanning calorimetry (DSC) from heating trace during the transformation from liquid to solid. 展开更多
关键词 eutectic alloys directional solidification microhardness electrical conductivity enthalpy specific heat
下载PDF
STRUCTURE IMPROVEMENT AND TEMPERATURE FIELD SIMULATION OF PREPARING NANOPOWDER BY EVAPORATION-CONDENSATION METHOD
18
作者 J.S. Bao Y. Yin T.G. Liu Z.Y. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第3期178-182,共5页
A new apparatus, with a segregable conical water cooling condenser, which is heated by an electric arc using the evaporation-condensation method to prepare carbon-coated nanopowder, has been developed by the authors. ... A new apparatus, with a segregable conical water cooling condenser, which is heated by an electric arc using the evaporation-condensation method to prepare carbon-coated nanopowder, has been developed by the authors. Numerical simulation of the temperature field is done by the ANSYS software, and temperature in the reaction vessel is measured with the help of an experiment, to verify the simulation result. Influence of the temperature field in the reaction vessel, on the process of preparing nanopowder is then discussed simply. It is shown that the segregable conical water cooling condenser and carbon-coated surface process can be used to prepare steady carbon-coated metal nanopowder, at a lower cost and higher yield rate than the traditional structure. Simulation of the temperature field in the apparatus shows that the arc heating method can form a temperature field in the apparatus, which is quite favorable for nanopowder formation. Experiments show that the rational parameters using this apparatus, with the arc heating method to prepare carbon-coated nanopowder are electricity 60-100 A and arc length 5-8 mm. 展开更多
关键词 Evaporation-condensation method Electric arc heating Temperature field Condenser structure
下载PDF
Coordinated control strategy for wind power accommodation based on electric heat storage and pumped storage
19
作者 LI Shou dong DONG Hai ying +1 位作者 ZHANG Rui ping MA Xi ping 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期269-278,共10页
To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power... To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy. 展开更多
关键词 wind power accommodation electric heat storage pumped storage wind power fluctuation coordinated control
下载PDF
Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads
20
作者 迟锋 孙连亮 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期87-91,共5页
Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non- equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of ... Heat generated by electric current in a quantum dot device contacting a phonon bath is studied using the non- equilibrium Green function technique. Spin-polarized current is generated owing to the Zeeman splitting of the dot level. The current's strength and the spin polarization are further manipulated by changing the frequency of an applied photon field and the ferromagnetism on the leads. We find that the associated heat by this spin- polarized current emerges even if the bias voltage is smaller than the phonon energy quanta and obvious negative differential of the heat generation develops when the photon frequency exceeds that of the phonon. It is also found that both the strength and the resonant peaks' position of the heat generation can be tuned by changing the value and the arrangement configurations of the magnetic moments of the two leads, and then provides an effective method to generate large spin-polarized current with weak heat. Such a result may be useful in designing low energy consumption spintronic devices. 展开更多
关键词 by on heat is of in Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部