The status and the variation of electrical resistance of impacted carbon fiber/epoxy-matrix composites were studied by ultrasonic F-scan and electrical resistance measurement The experimental results shows that impact...The status and the variation of electrical resistance of impacted carbon fiber/epoxy-matrix composites were studied by ultrasonic F-scan and electrical resistance measurement The experimental results shows that impact damage energy threshold value of carbon fabric/epoxy-matrix composites can determine by using ultrasonic F-scan. When the impact energy exceeds the threshold value, damage is generated in composites. Electrical resistance of impacted composites is changed owing to the contact of each carbon fiber unit in composites, which cause a change of the series-parallel in conductors. The veracity of detecting impact damage in composites can be improved in this case.展开更多
Impact damage tolerance is provided in intensity design on composites. The compression intensity of impacted composites requires more than 60% of its original intensity. The influence of impact on compressive intensit...Impact damage tolerance is provided in intensity design on composites. The compression intensity of impacted composites requires more than 60% of its original intensity. The influence of impact on compressive intensity and electrical resistance of carbon fabric/epoxy-matrix composites was studied in this paper. The experimental results shows that impact can cause damage in composites, degenerate compressive intensity, and increase resistance. The electrical resistance change rate was used as an evaluation indicator of impact damage tolerance of composites. Impact damage, which results from the applying process of composites, can be identified in time by electrical resistance measurement. So, the safety performance of composites can also be improved.展开更多
After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with...After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with the time, and if changing the value of voltage, the electric resistance was obviously affected. When current flew through the specimen, polarisation emerged under a high votage (>5 upsilon), but that could be neglected under a low voltage (<5 upsilon).(1)展开更多
For city planning and reducing potential earthquake risk,it’s necessary to detect the information of the buried faults in an urban area especially,including the location and activities.An integrated technique with ge...For city planning and reducing potential earthquake risk,it’s necessary to detect the information of the buried faults in an urban area especially,including the location and activities.An integrated technique with geophysical and geological methods,including the shallow seismic reflection profile,electrical resistivity measurement,geologic borehole section,and exploration trench,was used to detect the Chengnanhe fault,which is one of the two main faults passing through the Weihai urban area in Shandong province,China.The results show that it is a normal fault striking with E-W direction,and it is relatively inactive and stable.By using the thermoluminescence(TL)dating,we found that the Chengnanhe fault initiated in mid-Pleistocene and there was no offset after late Pleistocene.Such an integrated technique with multiple geological and geophysical methods provides a significant assessment of earthquake risk for city planning in urban areas.展开更多
The evaluation of rock damage behaviour is an important requirement for ensuring stability control and safety prediction in rock engineering.However,they have not been able to obtain sufficiently accurate and dynamic ...The evaluation of rock damage behaviour is an important requirement for ensuring stability control and safety prediction in rock engineering.However,they have not been able to obtain sufficiently accurate and dynamic results due to the insufficient evaluation method.In this study,by means of fractals and unit series division,a unit series-parallel conductive model of damaged rock is derived,and a new evaluation method of rock damage under uniaxial compression was proposed.Rock was damaged by uniaxial compression,while electrical measurements and X-ray microscopy tests were performed to obtain the damaged rock resistivity,porosity,and fractal dimension variation.By establishing the relationship between defined meso-damage factor and resistivity,rock damage evolution law under axial compression was obtained.The results indicate that the growth trend was agree with the classical statistical damage model,which verified the accuracy of the results obtained by the proposed method.Moreover,as the strain increased,the damage factor determined by resistivity gradually decreased to0.06 firstly and then increased rapidly to 0.79.Different from previous damage evolution law,brittle failure was observed and the cracks development in each stage was considered,including the closure(negative damage)and expansion(positive damage)of cracks.展开更多
The thermal characteristics of 808 nm Al Ga As/Ga As laser diodes(LDs) are analyzed via electrical transient measurements and infrared thermography. The temperature rise and thermal resistance are measured at variou...The thermal characteristics of 808 nm Al Ga As/Ga As laser diodes(LDs) are analyzed via electrical transient measurements and infrared thermography. The temperature rise and thermal resistance are measured at various input currents and powers. From the electrical transient measurements, it is found that there is a significant reduction in thermal resistance with increasing power because of the device power conversion efficiency. The component thermal resistance that was obtained from the structure function showed that the total thermal resistance is mainly composed of the thermal resistance of the sub-mount rather than that of the LD chip, and the thermal resistance of the sub-mount decreases with increasing current. The temperature rise values are also measured by infrared thermography and are calibrated based on a reference image, with results that are lower than those determined by electrical transient measurements. The difference in the results is caused by the limited spatial resolution of the measurements and by the signal being captured from the facet rather than from the junction of the laser diode.展开更多
The effects of isovalent Sb substitution on the superconducting properties of the Ca0.88La0.12Fe2(As1-ySby)2 system have been studied through electrical resistivity measure- ments. It is seen that the antiferromagne...The effects of isovalent Sb substitution on the superconducting properties of the Ca0.88La0.12Fe2(As1-ySby)2 system have been studied through electrical resistivity measure- ments. It is seen that the antiferromagnetic or structural transition is suppressed with Sb content, and a high-To superconducting phase, accompanied by a low-Tc phase, emerges at 0.02 ≤y ≤ 0.06. In this intermediate-doping regime, normal-state transport shows non-Fermi-liquid-like behaviors with nearly T-linear resistivity above the high-Tc phase. With further Sb doping, this high-Tc phase abruptly vanishes for y 〉 0.06 and the conventional Fermi liquid is restored, while the low-T,, phase remains robust against Sb inlpurities. The coincidence of the high-Tc phase and non-Fermi liquid transport behaviors in the intermediate Sb-doping regime suggests that AFM fluctuations play an important role in the observed non-Fermi liquid behaviors, which may be intimately related to the unusual nonbulk high-Tc phase in this system.展开更多
基金Funded by the Key Laboratory of Nondestructive Testing (Nanchang Hangkong University), Ministry of Education, China(No.ZD200829001)
文摘The status and the variation of electrical resistance of impacted carbon fiber/epoxy-matrix composites were studied by ultrasonic F-scan and electrical resistance measurement The experimental results shows that impact damage energy threshold value of carbon fabric/epoxy-matrix composites can determine by using ultrasonic F-scan. When the impact energy exceeds the threshold value, damage is generated in composites. Electrical resistance of impacted composites is changed owing to the contact of each carbon fiber unit in composites, which cause a change of the series-parallel in conductors. The veracity of detecting impact damage in composites can be improved in this case.
基金Funded by Key Laboratory of Nondestructive Testing (Nanchang Hangkong University)Ministry of Education, China(No. ZD200829001)Department of Education of Jiangxi Province, China(No. GJJ10531)
文摘Impact damage tolerance is provided in intensity design on composites. The compression intensity of impacted composites requires more than 60% of its original intensity. The influence of impact on compressive intensity and electrical resistance of carbon fabric/epoxy-matrix composites was studied in this paper. The experimental results shows that impact can cause damage in composites, degenerate compressive intensity, and increase resistance. The electrical resistance change rate was used as an evaluation indicator of impact damage tolerance of composites. Impact damage, which results from the applying process of composites, can be identified in time by electrical resistance measurement. So, the safety performance of composites can also be improved.
基金Financed by National Natural Science Fundation of China Key project.No.59432061
文摘After having measured the electric resistance of carbon firbre reinforced concrete (CFRC) by applying a D. C. current, it was found that the current passing through the specimen under a constant voltage decreased with the time, and if changing the value of voltage, the electric resistance was obviously affected. When current flew through the specimen, polarisation emerged under a high votage (>5 upsilon), but that could be neglected under a low voltage (<5 upsilon).(1)
基金the Special Fund of China Seismic Experimental Site(Nos.2019CSES0103,2018CESE0102 and 2016CESE0203)the National Natural Science Foundation of China(Nos.41630210,41674060,41974054,and 41974061)the“Active Faults Exploration and Seismic Hazard Assessment in Weihai City”funded by Weihai Municipal People's Government.
文摘For city planning and reducing potential earthquake risk,it’s necessary to detect the information of the buried faults in an urban area especially,including the location and activities.An integrated technique with geophysical and geological methods,including the shallow seismic reflection profile,electrical resistivity measurement,geologic borehole section,and exploration trench,was used to detect the Chengnanhe fault,which is one of the two main faults passing through the Weihai urban area in Shandong province,China.The results show that it is a normal fault striking with E-W direction,and it is relatively inactive and stable.By using the thermoluminescence(TL)dating,we found that the Chengnanhe fault initiated in mid-Pleistocene and there was no offset after late Pleistocene.Such an integrated technique with multiple geological and geophysical methods provides a significant assessment of earthquake risk for city planning in urban areas.
基金supported by Open Fund of State Key Laboratory of Frozen Soil Engineering (SKLFSE202115)the National Key R&D Program of China (2018YFC1504504).
文摘The evaluation of rock damage behaviour is an important requirement for ensuring stability control and safety prediction in rock engineering.However,they have not been able to obtain sufficiently accurate and dynamic results due to the insufficient evaluation method.In this study,by means of fractals and unit series division,a unit series-parallel conductive model of damaged rock is derived,and a new evaluation method of rock damage under uniaxial compression was proposed.Rock was damaged by uniaxial compression,while electrical measurements and X-ray microscopy tests were performed to obtain the damaged rock resistivity,porosity,and fractal dimension variation.By establishing the relationship between defined meso-damage factor and resistivity,rock damage evolution law under axial compression was obtained.The results indicate that the growth trend was agree with the classical statistical damage model,which verified the accuracy of the results obtained by the proposed method.Moreover,as the strain increased,the damage factor determined by resistivity gradually decreased to0.06 firstly and then increased rapidly to 0.79.Different from previous damage evolution law,brittle failure was observed and the cracks development in each stage was considered,including the closure(negative damage)and expansion(positive damage)of cracks.
基金Project supported by the National Natural Science Foundation of China(Nos.61376077,61201046,61204081)
文摘The thermal characteristics of 808 nm Al Ga As/Ga As laser diodes(LDs) are analyzed via electrical transient measurements and infrared thermography. The temperature rise and thermal resistance are measured at various input currents and powers. From the electrical transient measurements, it is found that there is a significant reduction in thermal resistance with increasing power because of the device power conversion efficiency. The component thermal resistance that was obtained from the structure function showed that the total thermal resistance is mainly composed of the thermal resistance of the sub-mount rather than that of the LD chip, and the thermal resistance of the sub-mount decreases with increasing current. The temperature rise values are also measured by infrared thermography and are calibrated based on a reference image, with results that are lower than those determined by electrical transient measurements. The difference in the results is caused by the limited spatial resolution of the measurements and by the signal being captured from the facet rather than from the junction of the laser diode.
基金This work was supported by tile National Natural Science Foundation of China (Grant Nos. U1432135, 11674054, 11474080, and 11611140101) and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ1621). X. Xu would also like to acknowledge the National Key Basic Research Program of China (Grant No. 2014CB648400) and the support from the Distinguished Young Scientist Funds of Zhejiang Province (No. LR14A040001).
文摘The effects of isovalent Sb substitution on the superconducting properties of the Ca0.88La0.12Fe2(As1-ySby)2 system have been studied through electrical resistivity measure- ments. It is seen that the antiferromagnetic or structural transition is suppressed with Sb content, and a high-To superconducting phase, accompanied by a low-Tc phase, emerges at 0.02 ≤y ≤ 0.06. In this intermediate-doping regime, normal-state transport shows non-Fermi-liquid-like behaviors with nearly T-linear resistivity above the high-Tc phase. With further Sb doping, this high-Tc phase abruptly vanishes for y 〉 0.06 and the conventional Fermi liquid is restored, while the low-T,, phase remains robust against Sb inlpurities. The coincidence of the high-Tc phase and non-Fermi liquid transport behaviors in the intermediate Sb-doping regime suggests that AFM fluctuations play an important role in the observed non-Fermi liquid behaviors, which may be intimately related to the unusual nonbulk high-Tc phase in this system.