Finite element simulations were conducted to study the mechanism of spark plasma sintering. The spark plasma sintering of SiC ceramics was simulated by the Marc software based on the load current curve and temperature...Finite element simulations were conducted to study the mechanism of spark plasma sintering. The spark plasma sintering of SiC ceramics was simulated by the Marc software based on the load current curve and temperature-time curve deserved by SPS experiment. The concept of equivalent radiation coefficient was presented and applied during the simulation. The temperature distribution regularity of SiC ceramics sintered by SPS technology was got by thermal-electrical coupled finite element simulation. The experimental results show that by thermal-electrical coupled finite element analysis, the temperature rising and distribution regularity of nonconductive material can be preferable forecasted in the sintering process of SPS. In the initial stage of the heat preservation, the temperature of the central part of the sample has achieved sintering temperature, but now, the temperature of the sample is not uniform. The temperature for each part of the die is also quite different and the sample temperature in the center is higher than that in the edge. In the end of heat preservation, the central temperature of the sample is 50 ℃higher than the required sintering temperature, and the temperature gap for each part of the die decreases gradually.展开更多
In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power a...In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.展开更多
Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in a...Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in an isoparametric concept,the same high order and high continuity non-uniform rational B-splines(NURBS)to represent both the geometry and the physical field of the structure.Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved,IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli(EB)beam elements,therefore,does not need extra rotational degrees-of-freedom.In this paper,we present a thermally induced vibration analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.We fully exploited the higher order,higher continuous and geometric exactness of the NURBS basis with both benchmarks and sophisticated problems.In particular,we studied the thermally induced vibrations of the Hubble Space Telescope(HST)solar panel where main factors influencing thermal flutters are studied,and where possible improvements of the analytical reference methods are discussed.Additionally,thermally induced vibrations of the thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress the thermally induced vibrations.Numerical examples of both benchmarks and sophisticated problems confirm the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of space structures.展开更多
An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating stat...An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating states (pumping and regeneration) and foreseeable accidents with the cryo-pump. This paper describes a thermal-structural coupled analysis of the present TCPH according to tho allowatfle stress criteria of RCC-MR, in which the worst cases and outcomes of various load combinations are obtained. Meanwhile, optimization of the structure has been carried oul, to obtain positive analysis results and an adequate safety margin.展开更多
With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses...With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses, which leads to instability and inefficiency.In this paper, the mechanical–temperature field coupling analysis is conducted to analyze the relationship between the temperature field and structure, and multi-objective optimization of a rotor is performed to improve the design reliability and efficiency. Firstly, the temperature field is calculated by the 2 D finite element model of MSPMSM and the method of applying the 2 D temperature result to the 3 D finite element model of the motor rotor equivalently is proposed. Then the thermal–structure coupling analysis is processed through mathematic method and finite element method(FEM),in which the 3 D finite element model is established precisely in a way and approaches the practical operation state further. Moreover, the impact produced by the temperature and structure on the mechanical strength is analyzed in detail. Finally, the optimization mathematical model of the motor rotor is established with Sequential Quadratic Programming-NLPQL selected in the optimization scheme. Through optimization, the strength of the components in the motor rotor increases obviously and satisfies the design requirement, which to a great extend enhances the service life of the MSPMSM rotor.展开更多
长波红外差分干涉仪在低温工况下会因光学元件受到非均匀应力作用产生干涉条纹的畸变,从而降低干涉仪系统性能。本文为解决低温工况干涉条纹弯曲畸变问题,基于长波红外差分干涉仪光机系统进行了干涉条纹畸变影响因素分析,结合光-机-热...长波红外差分干涉仪在低温工况下会因光学元件受到非均匀应力作用产生干涉条纹的畸变,从而降低干涉仪系统性能。本文为解决低温工况干涉条纹弯曲畸变问题,基于长波红外差分干涉仪光机系统进行了干涉条纹畸变影响因素分析,结合光-机-热耦合分析方法,对干涉仪系统低温工作状态进行仿真。随后设计了针对影响条纹畸变的关键元件——光栅元件的低温微应力动态稳定支撑安装结构,结构优化后的光栅表面面形均方根(Root Mean Square,RMS)值为3.89×10^(-2) nm,面形峰谷值(Peak to Valley,PV)值为2.21×10^(-1) nm,分别较优化前初始系统的分析结果减小了5个数量级,系统仿真干涉条纹畸变小于1个探测器像元。全系统低温验证试验表明,优化结构可有效抑制干涉条纹畸变,畸变量小于2个探测器像元,试验与仿真计算结果一致性较好,验证了优化分析方法的有效性。该优化方案对提升反射式光学系统结构低温稳定性,提高系统工作能力有较大意义和价值。展开更多
基金Funded by the Natural Science Foundation of Hebei Province, China (No.E2012203086)
文摘Finite element simulations were conducted to study the mechanism of spark plasma sintering. The spark plasma sintering of SiC ceramics was simulated by the Marc software based on the load current curve and temperature-time curve deserved by SPS experiment. The concept of equivalent radiation coefficient was presented and applied during the simulation. The temperature distribution regularity of SiC ceramics sintered by SPS technology was got by thermal-electrical coupled finite element simulation. The experimental results show that by thermal-electrical coupled finite element analysis, the temperature rising and distribution regularity of nonconductive material can be preferable forecasted in the sintering process of SPS. In the initial stage of the heat preservation, the temperature of the central part of the sample has achieved sintering temperature, but now, the temperature of the sample is not uniform. The temperature for each part of the die is also quite different and the sample temperature in the center is higher than that in the edge. In the end of heat preservation, the central temperature of the sample is 50 ℃higher than the required sintering temperature, and the temperature gap for each part of the die decreases gradually.
基金the Province Postdoctoral Foundation of Jiangsu(1501164B)the Technical Innovation Nurturing Foundation of Yangzhou University(2015CXJ016)China Postdoctoral Science Foundation(2016M600447)
文摘In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.
基金Y.Guo would like to thank the National Natural Science Foundation of China(Grant No.11972187)and Priority Academic Program Development of Jiangsu Higher Education Institutions for their support.
文摘Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in an isoparametric concept,the same high order and high continuity non-uniform rational B-splines(NURBS)to represent both the geometry and the physical field of the structure.Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved,IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli(EB)beam elements,therefore,does not need extra rotational degrees-of-freedom.In this paper,we present a thermally induced vibration analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.We fully exploited the higher order,higher continuous and geometric exactness of the NURBS basis with both benchmarks and sophisticated problems.In particular,we studied the thermally induced vibrations of the Hubble Space Telescope(HST)solar panel where main factors influencing thermal flutters are studied,and where possible improvements of the analytical reference methods are discussed.Additionally,thermally induced vibrations of the thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress the thermally induced vibrations.Numerical examples of both benchmarks and sophisticated problems confirm the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of space structures.
基金supported by International Thermonuclear Experimental Reactor (ITER) Specific Plan in China (2009GB101004)
文摘An ITER torus cryo-pump housing (TCPH), which encloses a torus cryo-pump, is connected to a vacuum vessel (VV) by a set of associated double bellows. There are complicated loads due to two different operating states (pumping and regeneration) and foreseeable accidents with the cryo-pump. This paper describes a thermal-structural coupled analysis of the present TCPH according to tho allowatfle stress criteria of RCC-MR, in which the worst cases and outcomes of various load combinations are obtained. Meanwhile, optimization of the structure has been carried oul, to obtain positive analysis results and an adequate safety margin.
基金co-supported by the Excellent Youth Science Foundation of China(No.51722501)the China Postdoctoral Science Foundation(No.2016M600027)+1 种基金the National Natural Science Foundation of China(Nos.51575025 and 61703022)the Preliminary Exploration of Project of China(No.7131474)
文摘With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses, which leads to instability and inefficiency.In this paper, the mechanical–temperature field coupling analysis is conducted to analyze the relationship between the temperature field and structure, and multi-objective optimization of a rotor is performed to improve the design reliability and efficiency. Firstly, the temperature field is calculated by the 2 D finite element model of MSPMSM and the method of applying the 2 D temperature result to the 3 D finite element model of the motor rotor equivalently is proposed. Then the thermal–structure coupling analysis is processed through mathematic method and finite element method(FEM),in which the 3 D finite element model is established precisely in a way and approaches the practical operation state further. Moreover, the impact produced by the temperature and structure on the mechanical strength is analyzed in detail. Finally, the optimization mathematical model of the motor rotor is established with Sequential Quadratic Programming-NLPQL selected in the optimization scheme. Through optimization, the strength of the components in the motor rotor increases obviously and satisfies the design requirement, which to a great extend enhances the service life of the MSPMSM rotor.
文摘长波红外差分干涉仪在低温工况下会因光学元件受到非均匀应力作用产生干涉条纹的畸变,从而降低干涉仪系统性能。本文为解决低温工况干涉条纹弯曲畸变问题,基于长波红外差分干涉仪光机系统进行了干涉条纹畸变影响因素分析,结合光-机-热耦合分析方法,对干涉仪系统低温工作状态进行仿真。随后设计了针对影响条纹畸变的关键元件——光栅元件的低温微应力动态稳定支撑安装结构,结构优化后的光栅表面面形均方根(Root Mean Square,RMS)值为3.89×10^(-2) nm,面形峰谷值(Peak to Valley,PV)值为2.21×10^(-1) nm,分别较优化前初始系统的分析结果减小了5个数量级,系统仿真干涉条纹畸变小于1个探测器像元。全系统低温验证试验表明,优化结构可有效抑制干涉条纹畸变,畸变量小于2个探测器像元,试验与仿真计算结果一致性较好,验证了优化分析方法的有效性。该优化方案对提升反射式光学系统结构低温稳定性,提高系统工作能力有较大意义和价值。