Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. M...Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. Methods: Thirty-two late-stage elderly individuals were evaluated for knee pain during rest, walking, and program exercises, with and without TENS. Gait analysis was performed using an IoT-based gait analysis device to examine the effects of TENS-induced analgesia on gait. Results: TENS significantly reduced knee pain during rest, walking, and programmed exercises, with the greatest analgesic effect observed during walking. The greater the knee pain without TENS, the more significant the analgesic effect of TENS. A comparison of gait parameters revealed a significant difference only in the gait cycle time, with a trend towards faster walking with TENS;however, the effect was limited. Conclusion: TENS effectively relieves knee pain in late-stage elderly individuals and can be safely applied during exercise. Pain management using TENS provides important insights into the implementation of exercise therapy in this age group.展开更多
A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface po...A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.展开更多
N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices di...N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance(NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer,and the charge trapping/detrapping in the nanocrystals.展开更多
The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface ...The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface of electrode in the process of electrochemical deposition enhanced the coordination interaction between pi-electrons of thiophene unit and the metal, which makes thiophene rings lie parallel to the surface of electrode, resulting in a highly ordered polymeric structure. Because of the large intra-chain transfer integrals, the transport of charge is believed to be principally along the conjugated chains, which is much greater than the inter-chain hopping. The specific electrical resistance across the polythiophene film thickness is more than 10(4) times than that along the surface plane of the film. In this paper we review the recent development of polymerization technique by low potential electrochemical method performed in our lab and several electrical devices in which the compact polythiophene films, such as anionic and cationic sieves, and laminate film junction of undoped polythiophene derivatives were used.展开更多
Uniaxial stress is a powerful tool for tuning exciton emitting wavelength, polarization, fine-structure splitting (FSS), and the symmetry of quantum dots (QDs). Here, we present a technique for applying uniaxial stres...Uniaxial stress is a powerful tool for tuning exciton emitting wavelength, polarization, fine-structure splitting (FSS), and the symmetry of quantum dots (QDs). Here, we present a technique for applying uniaxial stress, which enables us in situ to tune exciton optical properties at low temperature down to 15 K with high tuning precision. The design and operation of the device are described in detail. This technique provides a simple and convenient approach to tune QD structural symmetry, exciton energy and biexciton binding energy. It can be utilized for generating entangled and indistinguishable photons. Moreover, this device can be employed for tuning optical properties of thin film materials at low temperature.展开更多
Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical met...Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical method permits one to assess the error occurrence probability in transmitting the data packets considering the dependence on the signal pulses energies-to-pulse disturbances energies ratio and the disturbances repetition frequency-to-data transmission rate ratio and also the dependence on the bits quantity in the packet. The numerical method allows one to assess the specific effect of the repetitive pulse disturbance influence on the digital devices functioning (the number of errors in transmitted data packets, transmission rate, etc.) depending on such factors as the repetition frequency, the disturbance waveform and duration, the mode of data coding, etc..展开更多
Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically...Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.展开更多
This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron curren...It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices.展开更多
Semiconductor films of organic, doped dimetallophthalocyanine M2Pcs (M = Li, Na) on different substrates were prepared by synthesis and vacuum evaporation. Tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) ...Semiconductor films of organic, doped dimetallophthalocyanine M2Pcs (M = Li, Na) on different substrates were prepared by synthesis and vacuum evaporation. Tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) were used as dopants and the structure and morphology of the semiconductor films were studied using IR spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The absorption spectra recorded in the ultraviolet-visible region for the deposited films showed the Q and Soret bands related to the electronic π-π* transitions in M2Pc molecules. Optical characterization of the films indicates electronic transitions characteristic of amorphous thin films with optical bandgaps between 1.2 and 2.4 eV. Finally, glass/ITO/doped M2Pc/Ag thin-film devices were produced and their electrical behavior was evaluated by using the four-tip collinear method. The devices manufactured from Na2Pc have a small rectifying effect, regardless of the organic dopant used, while the device manufactured from Li2Pc-TCNQ presents ohmic-like behavior at low voltages, with an insulating threshold around 19 V. Parameters such as the hole mobility (μ), the concentration of thermally-generated holes (p0), the concentration of traps per unit of energy (P0) and the total trap concentration (Nt(e)) were also determined for the Li2Pc-TTF device.展开更多
As cardiac implantable electronic devices(CIED)become more prevalent,it is important to acknowledge potential electromagnetic interference(EMI)from other sources,such as internal and external electronic devices and pr...As cardiac implantable electronic devices(CIED)become more prevalent,it is important to acknowledge potential electromagnetic interference(EMI)from other sources,such as internal and external electronic devices and procedures and its effect on these devices.EMI from other sources can potentially inhibit pacing and trigger shocks in permanent pacemakers(PPM)and implantable cardioverter defibrillators(ICD),respectively.This review analyzes potential EMI amongst CIED and left ventricular assist device,deep brain stimulators,spinal cord stimulators,transcutaneous electrical nerve stimulators,and throughout an array of procedures,such as endoscopy,bronchoscopy,and procedures involving electrocautery.Although there is evidence to support EMI from internal and external devices and during procedures,there is a lack of large multicenter studies,and,as a result,current management guidelines are based primarily on expert opinion and anecdotal experience.We aim to provide a general overview of PPM/ICD function,review documented EMI effect on these devices,and acknowledge current management of CIED interference.展开更多
A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Po...A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon fihn thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1 μm which is much larger than the normal value of about 30 V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2 μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.展开更多
Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor functio...Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method.Through a series of novel design concepts,including the integration of a detecting circuit and an analog-to-digital converter,a miniaturized functional electrical stimulation circuit technique,a low-power super-regeneration chip for wireless receiving,and two wearable armbands,a prototype system has been established with reduced size,power,and overall cost.Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects,the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy.Test results showed that wrist flexion/extension,hand grasp,and finger extension could be reproduced with high accuracy and low latency.This system can build a bridge of information transmission between healthy limbs and paralyzed limbs,effectively improve voluntary participation of hemiplegic patients,and elevate efficiency of rehabilitation training.展开更多
The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the app...The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.展开更多
Recently, spin-momentum-locked topological surface states(SSs) have attracted significant attention in spintronics.Owing to spin-momentum locking, the direction of the spin is locked at right angles with respect to ...Recently, spin-momentum-locked topological surface states(SSs) have attracted significant attention in spintronics.Owing to spin-momentum locking, the direction of the spin is locked at right angles with respect to the carrier momentum.In this paper, we briefly review the exotic transport properties induced by topological SSs in topological-insulator(TI)nanostructures, which have larger surface-to-volume ratios than those of bulk TI materials. We discuss the electrical spin generation in TIs and its effect on the transport properties. A current flow can generate a pure in-plane spin polarization on the surface, leading to a current-direction-dependent magnetoresistance in spin valve devices based on TI nanostructures.A relative momentum shift of two coupled topological SSs also generates net spin polarization and induces an in-plane anisotropic negative magnetoresistance. Therefore, the spin-momentum locking can enable the broad tuning of the spin transport properties of topological devices for spintronic applications.展开更多
We introduce a full interaction Hamiltonian method to the generalized quantum chemical approach and apply it to investigate the electron tunneling properties of 1,3-benzenedithiol molecular device. The weak gate effec...We introduce a full interaction Hamiltonian method to the generalized quantum chemical approach and apply it to investigate the electron tunneling properties of 1,3-benzenedithiol molecular device. The weak gate effect we calculate is consistent with the experiment. The asymmetric current character mainly comes from the asymmetry of the molecule and the nonlinear responding to the gate electric field.展开更多
We hereby propose a software solution to perform high quality electrical measurements for the characterization of WORM (write-once read many), a new generation memory device which is being intensively studied for non-...We hereby propose a software solution to perform high quality electrical measurements for the characterization of WORM (write-once read many), a new generation memory device which is being intensively studied for non-volatile data storage. The as-proposed software is completely based on .NET framework and sample C# code. The paper performed a relevant measurement based on this software. Working WORM devices, based on a polymeric matrix embedded with gold and copper sulfide nanoparticles, have been used for test measurements. The aim of this paper is to show the main steps to develop a fully working measurement software without using any expensive dedicated software.展开更多
The Technical Services and the Medical Administration of the Hospitals of Trieste have been working for years to ensure the optimal functioning of the Surgery, Intensive Care, Diagnostics and Research Services offered...The Technical Services and the Medical Administration of the Hospitals of Trieste have been working for years to ensure the optimal functioning of the Surgery, Intensive Care, Diagnostics and Research Services offered to the Patients and to the University in an 800-bed hospital complex, transforming and innovating the buildings and support installations. We have dedicated special attention to the technologies necessary to guarantee the continuity of the power supply to the electromedical devices, increasingly numerous in highly specialized hospitals. We report the power of the generator sets and the UPS and our opinion that their power must be related to the overall consumption of the hospital, with a reserve margin.展开更多
In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as th...In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.展开更多
文摘Purpose: This study verified the effects of transcutaneous electrical nerve stimulation (TENS), which can be worn during walking and exercise, in elderly individuals with late-stage knee pain who exercise regularly. Methods: Thirty-two late-stage elderly individuals were evaluated for knee pain during rest, walking, and program exercises, with and without TENS. Gait analysis was performed using an IoT-based gait analysis device to examine the effects of TENS-induced analgesia on gait. Results: TENS significantly reduced knee pain during rest, walking, and programmed exercises, with the greatest analgesic effect observed during walking. The greater the knee pain without TENS, the more significant the analgesic effect of TENS. A comparison of gait parameters revealed a significant difference only in the gait cycle time, with a trend towards faster walking with TENS;however, the effect was limited. Conclusion: TENS effectively relieves knee pain in late-stage elderly individuals and can be safely applied during exercise. Pain management using TENS provides important insights into the implementation of exercise therapy in this age group.
文摘A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.
基金supported by the National Natural Science Foundation of China(Grant No.61377028)the Natural Science Funds for Distinguished Young Scholar,China(Grant No.61125505)the Fundamental Research Funds for the Central Universities,China(Grant No.2014JBZ009)
文摘N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance(NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer,and the charge trapping/detrapping in the nanocrystals.
文摘The Complexation of thiophene with a Lewis acid with moderate acidity as a solvent, such as BF3-ethyl ether (BFEE) remarkedly lowered the electrochemical polymerization potential. The positively charged metal surface of electrode in the process of electrochemical deposition enhanced the coordination interaction between pi-electrons of thiophene unit and the metal, which makes thiophene rings lie parallel to the surface of electrode, resulting in a highly ordered polymeric structure. Because of the large intra-chain transfer integrals, the transport of charge is believed to be principally along the conjugated chains, which is much greater than the inter-chain hopping. The specific electrical resistance across the polythiophene film thickness is more than 10(4) times than that along the surface plane of the film. In this paper we review the recent development of polymerization technique by low potential electrochemical method performed in our lab and several electrical devices in which the compact polythiophene films, such as anionic and cationic sieves, and laminate film junction of undoped polythiophene derivatives were used.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301202)the National Natural Science Foundation of China(Grant No.61674135)
文摘Uniaxial stress is a powerful tool for tuning exciton emitting wavelength, polarization, fine-structure splitting (FSS), and the symmetry of quantum dots (QDs). Here, we present a technique for applying uniaxial stress, which enables us in situ to tune exciton optical properties at low temperature down to 15 K with high tuning precision. The design and operation of the device are described in detail. This technique provides a simple and convenient approach to tune QD structural symmetry, exciton energy and biexciton binding energy. It can be utilized for generating entangled and indistinguishable photons. Moreover, this device can be employed for tuning optical properties of thin film materials at low temperature.
文摘Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical method permits one to assess the error occurrence probability in transmitting the data packets considering the dependence on the signal pulses energies-to-pulse disturbances energies ratio and the disturbances repetition frequency-to-data transmission rate ratio and also the dependence on the bits quantity in the packet. The numerical method allows one to assess the specific effect of the repetitive pulse disturbance influence on the digital devices functioning (the number of errors in transmitted data packets, transmission rate, etc.) depending on such factors as the repetition frequency, the disturbance waveform and duration, the mode of data coding, etc..
基金Supported by the National Natural Science Foundation of China under Grant No 11304384the Research Project of National University of Defense Technology under Grant No JC13-07-02
文摘Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.
文摘This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
基金the National Natural Science Foundation of China(Nos.12232007,11972164,and 12102141)。
文摘It is discovered that the product of the current and the electric field in a PN junction should be regarded as the rate of work(power)done by the electric field force on moving charges(hole current and electron current),which was previously misinterpreted as solely a Joule heating effect.We clarify that it is exactly the work done by the electric field force on the moving charges to stimulate the emergence of non-equilibrium carriers,which triggers the novel physical phenomena.As regards to Joule heat,we point out that it should be calculated from Ohm’s law,rather than simply from the product of the current and the electric field.Based on this understanding,we conduct thorough discussion on the role of the electric field force in the process of carrier recombination and carrier generation.The thermal effects of carrier recombination and carrier generation followed are incorporated into the thermal equation of energy.The present study shows that the exothermic effect of carrier recombination leads to a temperature rise at the PN interface,while the endothermic effect of carrier generation causes a temperature reduction at the interface.These two opposite effects cause opposite heat flow directions in the PN junction under forward and backward bias voltages,highlighting the significance of managing device heating phenomena in design considerations.Therefore,this study possesses referential significance for the design and tuning on the performance of piezotronic devices.
文摘Semiconductor films of organic, doped dimetallophthalocyanine M2Pcs (M = Li, Na) on different substrates were prepared by synthesis and vacuum evaporation. Tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) were used as dopants and the structure and morphology of the semiconductor films were studied using IR spectroscopy, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The absorption spectra recorded in the ultraviolet-visible region for the deposited films showed the Q and Soret bands related to the electronic π-π* transitions in M2Pc molecules. Optical characterization of the films indicates electronic transitions characteristic of amorphous thin films with optical bandgaps between 1.2 and 2.4 eV. Finally, glass/ITO/doped M2Pc/Ag thin-film devices were produced and their electrical behavior was evaluated by using the four-tip collinear method. The devices manufactured from Na2Pc have a small rectifying effect, regardless of the organic dopant used, while the device manufactured from Li2Pc-TCNQ presents ohmic-like behavior at low voltages, with an insulating threshold around 19 V. Parameters such as the hole mobility (μ), the concentration of thermally-generated holes (p0), the concentration of traps per unit of energy (P0) and the total trap concentration (Nt(e)) were also determined for the Li2Pc-TTF device.
文摘As cardiac implantable electronic devices(CIED)become more prevalent,it is important to acknowledge potential electromagnetic interference(EMI)from other sources,such as internal and external electronic devices and procedures and its effect on these devices.EMI from other sources can potentially inhibit pacing and trigger shocks in permanent pacemakers(PPM)and implantable cardioverter defibrillators(ICD),respectively.This review analyzes potential EMI amongst CIED and left ventricular assist device,deep brain stimulators,spinal cord stimulators,transcutaneous electrical nerve stimulators,and throughout an array of procedures,such as endoscopy,bronchoscopy,and procedures involving electrocautery.Although there is evidence to support EMI from internal and external devices and during procedures,there is a lack of large multicenter studies,and,as a result,current management guidelines are based primarily on expert opinion and anecdotal experience.We aim to provide a general overview of PPM/ICD function,review documented EMI effect on these devices,and acknowledge current management of CIED interference.
基金Project supported by the National Natural Science Foundation of China (Grant No 60436030)National Laboratory of Analogue Integrated Circuits,China (Grant No 9140C090305060C09)
文摘A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon fihn thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1 μm which is much larger than the normal value of about 30 V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2 μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.
基金supported by the National Natural Science Foundation of China,No.90307013,90707005,61534003the Science&Technology Pillar Program of Jiangsu Province in China,No.BE2013706
文摘Voluntary participation of hemiplegic patients is crucial for functional electrical stimulation therapy.A wearable functional electrical stimulation system has been proposed for real-time volitional hand motor function control using the electromyography bridge method.Through a series of novel design concepts,including the integration of a detecting circuit and an analog-to-digital converter,a miniaturized functional electrical stimulation circuit technique,a low-power super-regeneration chip for wireless receiving,and two wearable armbands,a prototype system has been established with reduced size,power,and overall cost.Based on wrist joint torque reproduction and classification experiments performed on six healthy subjects,the optimized surface electromyography thresholds and trained logistic regression classifier parameters were statistically chosen to establish wrist and hand motion control with high accuracy.Test results showed that wrist flexion/extension,hand grasp,and finger extension could be reproduced with high accuracy and low latency.This system can build a bridge of information transmission between healthy limbs and paralyzed limbs,effectively improve voluntary participation of hemiplegic patients,and elevate efficiency of rehabilitation training.
基金funded by FCT (Fun- dacāo Ciência e Tecnologia) under grant PD/BD/128051/2016the Shift2Rail In2Stempo project (grant 777515)+3 种基金partially supported by FCT R&D Unit SYSTEC—POCI-01-0145-FEDER-006933SYSTEC funded by FEDER funds through COMPETE2020by national funds through the FCT/MECco-funded by FEDER, in the scope of the PT2020 Partnership Agreement。
文摘The high dynamic power requirements present in modern railway transportation systems raise research challenges for an optimal operation of railway electrification. This paper presents a Monte Carlo analysis on the application of a power transfer device installed in the neutral zone and exchanging active power between two sections. The main analyzed parameters are the active power balance in the two neighbor traction power substations and the system power losses. A simulation framework is presented to comprise the desired analysis and a universe of randomly distributed scenarios are tested to evaluate the effectiveness of the power transfer device system. The results show that the density of trains and the relative branch length of a traction power substation should be considered in the evaluation phase of the best place to install a power transfer device, towards the reduction of the operational power losses, while maintaining the two substations balanced in terms of active power.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB921103 and 2017YFA0206304)the National Natural Science Foundation of China(Grant Nos.61822403,11874203,U1732159,and U1732273)+1 种基金Fundamental Research Funds for the Central Universities,China(Grant No.021014380080)Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics,China
文摘Recently, spin-momentum-locked topological surface states(SSs) have attracted significant attention in spintronics.Owing to spin-momentum locking, the direction of the spin is locked at right angles with respect to the carrier momentum.In this paper, we briefly review the exotic transport properties induced by topological SSs in topological-insulator(TI)nanostructures, which have larger surface-to-volume ratios than those of bulk TI materials. We discuss the electrical spin generation in TIs and its effect on the transport properties. A current flow can generate a pure in-plane spin polarization on the surface, leading to a current-direction-dependent magnetoresistance in spin valve devices based on TI nanostructures.A relative momentum shift of two coupled topological SSs also generates net spin polarization and induces an in-plane anisotropic negative magnetoresistance. Therefore, the spin-momentum locking can enable the broad tuning of the spin transport properties of topological devices for spintronic applications.
文摘We introduce a full interaction Hamiltonian method to the generalized quantum chemical approach and apply it to investigate the electron tunneling properties of 1,3-benzenedithiol molecular device. The weak gate effect we calculate is consistent with the experiment. The asymmetric current character mainly comes from the asymmetry of the molecule and the nonlinear responding to the gate electric field.
文摘We hereby propose a software solution to perform high quality electrical measurements for the characterization of WORM (write-once read many), a new generation memory device which is being intensively studied for non-volatile data storage. The as-proposed software is completely based on .NET framework and sample C# code. The paper performed a relevant measurement based on this software. Working WORM devices, based on a polymeric matrix embedded with gold and copper sulfide nanoparticles, have been used for test measurements. The aim of this paper is to show the main steps to develop a fully working measurement software without using any expensive dedicated software.
文摘The Technical Services and the Medical Administration of the Hospitals of Trieste have been working for years to ensure the optimal functioning of the Surgery, Intensive Care, Diagnostics and Research Services offered to the Patients and to the University in an 800-bed hospital complex, transforming and innovating the buildings and support installations. We have dedicated special attention to the technologies necessary to guarantee the continuity of the power supply to the electromedical devices, increasingly numerous in highly specialized hospitals. We report the power of the generator sets and the UPS and our opinion that their power must be related to the overall consumption of the hospital, with a reserve margin.
基金supported by a National Research Foundation of Korea grant funded by the Korean government(MSIT)(2020R1A2C1101039)by Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry,and Energy(MOTIE)of the Republic of Korea(20204030200060)supported by the Soonchunhyang University Research Fund
文摘In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.