With the rapid development of autonomous vehicles,more and more functions and computing requirements have led to the continuous centralization in the topology of electrical and electronic(E/E)architectures.While certa...With the rapid development of autonomous vehicles,more and more functions and computing requirements have led to the continuous centralization in the topology of electrical and electronic(E/E)architectures.While certain Tier1 suppliers,such as BOSCH,have previously proposed a serial roadmap for E/E architecture development,implemented since 2015 with significant contributions to the automotive industry,lingering misconceptions and queries persist in actual engineering processes.Notably,there are concerns regarding the perspective of zone-oriented E/E architectures,characterized by zonal concentration,as successors to domain-oriented E/E architectures,known for functional concentration.Addressing these misconceptions and queries,this study introduces a novel parallel roadmap for E/E architecture development,concurrently evaluating domain-oriented and zone-oriented schemes.Furthermore,the study explores hybrid E/E architectures,amalgamating features from both paradigms.To align with the evolution of E/E architectures,networking technologies must adapt correspondingly.The networking mechanisms pivotal in E/E architecture design are comprehensively discussed.Additionally,the study delves into modeling and verification tools pertinent to E/E architecture topologies.In conclusion,the paper outlines existing challenges and unresolved queries in this domain.展开更多
Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to...Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level ICVs.展开更多
With the continuous development of automotive intelligent networking and autonomous driving technologies,the number of in-vehicle electronic systems and applications is increasing rapidly.This change increases the amo...With the continuous development of automotive intelligent networking and autonomous driving technologies,the number of in-vehicle electronic systems and applications is increasing rapidly.This change increases the amount of data to be transmitted in the vehicle and puts forward further requirements of higher speed and safety for in-vehicle communication.Traditional vehicle bus technologies are no longer sufficient to meet today’s high-speed transmission requirements,in which copper cables are used extensively,resulting in serious electromagnetic interference(EMI).Vehicle optical fiber communication technology,besides greatly improving the data transmission rate,has the advantages of anti-EMI,reducing cable space and vehicle mass.This paper first presents the motivation of applying vehicle optical fiber communication technology and reviews the development history of vehicle optical fiber communication technology.Then,the paper researches the devel-opment trend of automotive electrical and electronic architecture(EEA),from distributed EEA to domain centralized EEA and zone-oriented EEA.Based on the discussion of the development trend of automotive EEA,an EEA based on vehicle optical fiber communication technology is proposed.Finally,the key points and future directions of vehicle optical fiber communication technology research are highlighted,including vehicle multi-mode optical fiber technology,vehicle optical fiber network protocol,and topology.展开更多
In recent decades,worldwide global warming and reduction in petroleum resources have accelerated researcher’s attention to produce alternative sustainable and environmentally clean transportation systems.Electrificat...In recent decades,worldwide global warming and reduction in petroleum resources have accelerated researcher’s attention to produce alternative sustainable and environmentally clean transportation systems.Electrification of vehicular technology is capable of curbing the environmental pollution problem in an efficient and effective way,due to high efficiency electric motors,development and advancement in the field of power electronic devices,digital signal processing and advanced control techniques.This article presents a comprehensive review on different configurations/architecture of electric vehicles(EVs)and hybrid electric vehicles(HEVs),traction motors for electric propulsion system and high performance speed sensorless control of traction drive.The basic architecture key components of hybrid vehicle and different power train configurations with respect to applications and limitations are discussed.The integral part of electric propulsion system,traction motor classes for desired operational characteristics and limitations are summarized from a system perspective with the latest improvements.High performance traction motor control techniques are discussed with respect to automotive applications.Finally,speed sensorless control techniques research trends as well as an extensive review on rotor speed estimation techniques for robust and efficient sensorless traction drive control are highlighted.This article provides state of the art key global trends and tradeoff of various technologies with future trends and potential areas of research.展开更多
基金supported by the National Key Research and Development Program of China(under Grant 2020YFB1600203)National Natural Science Foundation project(under Grant 52372374).
文摘With the rapid development of autonomous vehicles,more and more functions and computing requirements have led to the continuous centralization in the topology of electrical and electronic(E/E)architectures.While certain Tier1 suppliers,such as BOSCH,have previously proposed a serial roadmap for E/E architecture development,implemented since 2015 with significant contributions to the automotive industry,lingering misconceptions and queries persist in actual engineering processes.Notably,there are concerns regarding the perspective of zone-oriented E/E architectures,characterized by zonal concentration,as successors to domain-oriented E/E architectures,known for functional concentration.Addressing these misconceptions and queries,this study introduces a novel parallel roadmap for E/E architecture development,concurrently evaluating domain-oriented and zone-oriented schemes.Furthermore,the study explores hybrid E/E architectures,amalgamating features from both paradigms.To align with the evolution of E/E architectures,networking technologies must adapt correspondingly.The networking mechanisms pivotal in E/E architecture design are comprehensively discussed.Additionally,the study delves into modeling and verification tools pertinent to E/E architecture topologies.In conclusion,the paper outlines existing challenges and unresolved queries in this domain.
基金supported by the International Science and Technology Cooperation Program of China(Grant No.2016YFE0102200)the National Natural Science Foundation of China(Grant No.61773234)+1 种基金the National Key R&D Program of China(Grant No.2108YFB0105004)and Beijing Municipal Science and Technology Commission(Grant Nos.D171100005117001&D171100005117002)
文摘Intelligent connected vehicles(ICVs) are believed to change people's life in the near future by making the transportation safer,cleaner and more comfortable. Although many prototypes of ICVs have been developed to prove the concept of autonomous driving and the feasibility of improving traffic efficiency, there still exists a significant gap before achieving mass production of high-level ICVs. The objective of this study is to present an overview of both the state of the art and future perspectives of key technologies that are needed for future ICVs. It is a challenging task to review all related works and predict their future perspectives, especially for such a complex and interdisciplinary area of research. This article is organized to overview the ICV key technologies by answering three questions: what are the milestones in the history of ICVs; what are the electronic components needed for building an ICV platform; and what are the essential algorithms to enable intelligent driving? To answer the first question, the article has reviewed the history and the development milestones of ICVs. For the second question, the recent technology advances in electrical/electronic architecture, sensors, and actuators are presented. For the third question, the article focuses on the algorithms in decision making, as the perception and control algorithm are covered in the development of sensors and actuators. To achieve correct decision-making, there exist two different approaches: the principle-based approach and data-driven approach. The advantages and limitations of both approaches are explained and analyzed. Currently automotive engineers are concerned more with the vehicle platform technology, whereas the academic researchers prefer to focus on theoretical algorithms. However, only by incorporating elements from both worlds can we accelerate the production of high-level ICVs.
基金supported by the National Key Research and Development Program of China(under Grant 2020YFB1600203).
文摘With the continuous development of automotive intelligent networking and autonomous driving technologies,the number of in-vehicle electronic systems and applications is increasing rapidly.This change increases the amount of data to be transmitted in the vehicle and puts forward further requirements of higher speed and safety for in-vehicle communication.Traditional vehicle bus technologies are no longer sufficient to meet today’s high-speed transmission requirements,in which copper cables are used extensively,resulting in serious electromagnetic interference(EMI).Vehicle optical fiber communication technology,besides greatly improving the data transmission rate,has the advantages of anti-EMI,reducing cable space and vehicle mass.This paper first presents the motivation of applying vehicle optical fiber communication technology and reviews the development history of vehicle optical fiber communication technology.Then,the paper researches the devel-opment trend of automotive electrical and electronic architecture(EEA),from distributed EEA to domain centralized EEA and zone-oriented EEA.Based on the discussion of the development trend of automotive EEA,an EEA based on vehicle optical fiber communication technology is proposed.Finally,the key points and future directions of vehicle optical fiber communication technology research are highlighted,including vehicle multi-mode optical fiber technology,vehicle optical fiber network protocol,and topology.
文摘In recent decades,worldwide global warming and reduction in petroleum resources have accelerated researcher’s attention to produce alternative sustainable and environmentally clean transportation systems.Electrification of vehicular technology is capable of curbing the environmental pollution problem in an efficient and effective way,due to high efficiency electric motors,development and advancement in the field of power electronic devices,digital signal processing and advanced control techniques.This article presents a comprehensive review on different configurations/architecture of electric vehicles(EVs)and hybrid electric vehicles(HEVs),traction motors for electric propulsion system and high performance speed sensorless control of traction drive.The basic architecture key components of hybrid vehicle and different power train configurations with respect to applications and limitations are discussed.The integral part of electric propulsion system,traction motor classes for desired operational characteristics and limitations are summarized from a system perspective with the latest improvements.High performance traction motor control techniques are discussed with respect to automotive applications.Finally,speed sensorless control techniques research trends as well as an extensive review on rotor speed estimation techniques for robust and efficient sensorless traction drive control are highlighted.This article provides state of the art key global trends and tradeoff of various technologies with future trends and potential areas of research.