Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast...Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast ionic conductor.For a long time materialists and chemists have made great efforts in search of new fast ionic conductors with high ionic conductivity.In view of structure,they have synthesised silver and copper fast ionic conductors with so called open structures.But it is not so successful for searching more applicable alkaline fast ionic conductors.Since polymer has flexibility for making thin film,it concentrates attention on the polymer-alkaline salt complex.Fenton et al.have first reported poly(ethylene oxide) (PEO)-alkaline salt complex.Later on Armard et al.have investigated the electrical property of PEO-NaSCN.展开更多
Conductivity measurements of deuterated ammonium dihydrogen phosphate (DADP) crystals with different deuterated degrees are described. The conductivities increase with the deuterium content, and the value of the a-d...Conductivity measurements of deuterated ammonium dihydrogen phosphate (DADP) crystals with different deuterated degrees are described. The conductivities increase with the deuterium content, and the value of the a-direction is larger than that of the e-direction. Compared with DKDP crystals, DADP crystals have larger conductivities, which is partly due to the existence of A defects. The ac conductivity over the temperature range 25-170℃has shown a knee in the curve ofln(σT) versus T-1. The conductivity activation energy calculated by the slope of the high temperature region decreases with the deuterium content. The previously reported phase transition is not seen.展开更多
Covalent organic frameworks(COFs) are a class of crystalline porous organic materials with variable structures and fascinating properties. The intrinsic low conductivity impedes their widely application in optoelectro...Covalent organic frameworks(COFs) are a class of crystalline porous organic materials with variable structures and fascinating properties. The intrinsic low conductivity impedes their widely application in optoelectronic. Iodine doping is an effective way to enhance the electrical conductivity of COFs. Here, a novel 3D imine COF with lvt topology is synthesized from two different pentacene derivatives with the same core in the form of structural complementarity. DDHP-COF is a highly crystalline material featuring high surface area of 1679 m^(2)/g and excellent thermal stability up to 490 ℃. Upon doping with iodine, the electrical conductivity can reach as high as 1.5×10^(-2)S/m which is significantly enhanced over 6 orders of magnitude compared with the pristine COF.展开更多
This work focuses on the structural,electrical and magnetic properties of Bi_(0.8)Tb_(0.1)Ba_(0.1)Fe_(0.9)Ti_(0.1)O_(3)ceramics,fabricated by solid state reaction procedure.XRD forms of the samples at RT exhibited per...This work focuses on the structural,electrical and magnetic properties of Bi_(0.8)Tb_(0.1)Ba_(0.1)Fe_(0.9)Ti_(0.1)O_(3)ceramics,fabricated by solid state reaction procedure.XRD forms of the samples at RT exhibited perovskite phase through the hexagonal structure at room temperature.Dielectric studies of the materials with frequency at different temperatures(25-400℃)exhibit two dielectric anomalies,first at 175℃(ferroelectric-ferroelectric transition)and second at around 320℃(ferroelectric-paraelectric transition).The Curie temperature moved towards the low side temperature with the increase in frequency.The less value of activation energy got for these samples could be attributed to the influence of electronic contribution to the conductivity.A significant change in the magnetic studies was observed for Bi_(0.8)Tb_(0.1)Ba_(0.1)Fe_(0.9)Ti_(0.1)O_(3) ceramic.The impedance analysis confirms the non-Debye type nature of the ceramic and relaxation frequency moved to a higher temperature.The Nyquist plot and conductivity studies showed the NTCR behavior of samples.The highest magnetization field was found at temperature-268.15℃.展开更多
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S...Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.展开更多
0.5Ba(Zr_(0.2)Ti_(0.8))O3-0.5(Ba_(0.7)Sr_(0.3))TiO3(BZT-BST)has been explored in recent times for potential applications in energy harvesting,electrocaloric and energy storage.To this end,energy harvesting/conversion ...0.5Ba(Zr_(0.2)Ti_(0.8))O3-0.5(Ba_(0.7)Sr_(0.3))TiO3(BZT-BST)has been explored in recent times for potential applications in energy harvesting,electrocaloric and energy storage.To this end,energy harvesting/conversion and storage applications require an understanding of the conduction and loss mechanisms.The conduction mechanism in BZT-BST ceramics is studied using impedance spectroscopy(IS)at 0.1 Hz−3 MHz and 100−600°C.Impedance study reveals the presence of two types of relaxation processes due to grain and grain boundary contributions.The relaxation time and dc conductivity activation energies are obtained as 1.12/1.3 eV and 1.05/1.2eV for bulk/grain boundary,respectively,and found that oxygen vacancies dominated electrical behavior.The relaxation mechanism follows non-Debye-type behavior.The high resistance of the grain(bulk)in the ferroelectric region does not contribute to the high losses;the losses probably result from the phase transition.Also,BZT-BST ceramics exhibit a negative temperature coefficient of resistance(NTCR)behaviour.From a practical application point of view in the temperature regime of 25-65°C,the loss’s contri-bution is low.The significant contributions of loss result from the response of phase-transition in this temperature range(25-65°C)。展开更多
The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are...The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are: (ⅰ) The dominant contributions to the electrical conductivities for crystals Ⅰ and Ⅱ are from TCNQ molecular columns, and the charge carriers are electrons. (ⅱ) The electrical conduction is mainly due to the hopping of charge carriers between the seats of lattice. (ⅲ) The considerable difference of the electrical conductivities between crystals Ⅰ and Ⅱ is due to the differences between (a) the concentrations of charge carriers n_(AⅠ)~C= 0.9988-|e|/cell and n_(AⅡ)~C=0.0340-|e|/cell; (b) the widths of the energy bands △E_(AⅠ)^(LU)=0.88 eV and △E_(AⅡ)~LU=0.040 eV; (c) the first derivative of E with respect to k, (dE/dk)_(K_FAⅠ)^(LU)=0.27 eV· and (dE/dk)_(K_FAⅡ)~LU=0.0048 eV·; and (d) the difference of energy barriers for the hopping of charge carriers ∈_Ⅱ-∈Ⅰ=2.5-8.8 kJ/mol.展开更多
The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescen...The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescence analysis, and the effects of LiCl and A1_2O_3 on the conductivity of Li^+ in the system are studied as well. Adding Li_2O to the system gives rise to transfer from [BO_3] triangular units to [BO_4] tetrahedral. When Li_2O content exceeds 30mol%, the main group of the glass is the diborate group with more [BO_4] tetrahedra. The adding of LiCl has no obvious influence on the glass structure, and LiCl is under a state dissociated by network, but with the increase of LiCl, the increase of conductivity is obvious. By adding A1_2O_3, the glass can be formed when the room-temperature is cooling down,the conductivity decreases while the conductive activatory energy increases for the glass. The experiment shows that conductivity in the room-temperature is σ= 6.2×10^(-6)Ω^(-1)cm^(-1), when at 300℃, the σ=6.8×10^(-3)Ω^(-1)cm^(-1). The conductive activatory energy computed is 0.6~1.0eV.展开更多
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i...The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.展开更多
Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstr...Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstructure(e.g.aperture,roughness,and tortuosity),but in situ values and their anisotropy have not yet been estimated.Recent advances in geophysical techniques allow the detection of changes in electrical conductivity due to changes in crustal stress and these techniques can be used to predict subsurface fluid flow.However,the paucity of data on fractured rocks hinders the quantitative interpretation of geophysical monitoring data in the field.Therefore,considering different shear displacements and chemical erosions,an investigation was conducted into the hydraulic-electric relationship as an elevated stress change in fractures.The simulation of fracture flows was achieved using the lattice Boltzmann method,while the electrical properties were calculated through the finite element method,based on synthetic faults incorporating elastic-plastic deformation.Numerical results show that the hydraulic and electrical properties depend on the rock's geometric properties(i.e.fracture length,roughness,and shear displacement).The permeability anisotropy in the direction parallel or perpendicular to the shear displacement is also notable in high stress conditions.Conversely,the permeability econductivity(i.e.,formation factor)relationship is unique under all conditions and follows a linear trend in logarithmic coordinates.However,both matrix porosity and fracture spacing alter this relationship.Both increase the slope of the linear trend,thereby changing the sensitivity of electrical observations to permeability changes.展开更多
Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shapi...Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing.展开更多
We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive co...We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.展开更多
Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ...Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.展开更多
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced...In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.展开更多
The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged wi...The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged with current at a proper temperature. The electrical conductivity increases approximately linearly with increasing current density while the hardness remains constant. The microstructure observation reveals that a much higher density of dislocations and nanosized Cr precipitates appear after the imposition of current, which contributes to the higher electrical conductivity and hardness. The mechanism is related with three factors: 1) Joule heating due to the current, 2) migration of mass electrons, 3) solute atoms, vacancies, and dislocations promoted by electron wind force.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pai...The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.展开更多
The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt sy...The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.展开更多
CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hard...CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.展开更多
文摘Fast ionic conductors are one kind of solid state material with ionic conductivity as high as that of melten salts or liquid electrolytes.Ionic conductivity is one of the important parameters for characterizing a fast ionic conductor.For a long time materialists and chemists have made great efforts in search of new fast ionic conductors with high ionic conductivity.In view of structure,they have synthesised silver and copper fast ionic conductors with so called open structures.But it is not so successful for searching more applicable alkaline fast ionic conductors.Since polymer has flexibility for making thin film,it concentrates attention on the polymer-alkaline salt complex.Fenton et al.have first reported poly(ethylene oxide) (PEO)-alkaline salt complex.Later on Armard et al.have investigated the electrical property of PEO-NaSCN.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51323002 and 51402173the Independent Innovation Foundation of Shandong University under Grant No 2012JC016+1 种基金the Natural Science Foundation for Distinguished Young Scholar of Shandong Province under Grant No JQ201218the Project of Key Laboratory of Neutron Physics of China Academy Of Engineering Physics under Grant No 2014BB07
文摘Conductivity measurements of deuterated ammonium dihydrogen phosphate (DADP) crystals with different deuterated degrees are described. The conductivities increase with the deuterium content, and the value of the a-direction is larger than that of the e-direction. Compared with DKDP crystals, DADP crystals have larger conductivities, which is partly due to the existence of A defects. The ac conductivity over the temperature range 25-170℃has shown a knee in the curve ofln(σT) versus T-1. The conductivity activation energy calculated by the slope of the high temperature region decreases with the deuterium content. The previously reported phase transition is not seen.
基金financially supported by the National Natural Science Foundation of China (Nos. 51973153, 22001191)。
文摘Covalent organic frameworks(COFs) are a class of crystalline porous organic materials with variable structures and fascinating properties. The intrinsic low conductivity impedes their widely application in optoelectronic. Iodine doping is an effective way to enhance the electrical conductivity of COFs. Here, a novel 3D imine COF with lvt topology is synthesized from two different pentacene derivatives with the same core in the form of structural complementarity. DDHP-COF is a highly crystalline material featuring high surface area of 1679 m^(2)/g and excellent thermal stability up to 490 ℃. Upon doping with iodine, the electrical conductivity can reach as high as 1.5×10^(-2)S/m which is significantly enhanced over 6 orders of magnitude compared with the pristine COF.
基金the Defence Research and Development Organisation(DRDO)Govt.of India,for financial support under the research project ERIP/ER/1303129/M/01/1564.
文摘This work focuses on the structural,electrical and magnetic properties of Bi_(0.8)Tb_(0.1)Ba_(0.1)Fe_(0.9)Ti_(0.1)O_(3)ceramics,fabricated by solid state reaction procedure.XRD forms of the samples at RT exhibited perovskite phase through the hexagonal structure at room temperature.Dielectric studies of the materials with frequency at different temperatures(25-400℃)exhibit two dielectric anomalies,first at 175℃(ferroelectric-ferroelectric transition)and second at around 320℃(ferroelectric-paraelectric transition).The Curie temperature moved towards the low side temperature with the increase in frequency.The less value of activation energy got for these samples could be attributed to the influence of electronic contribution to the conductivity.A significant change in the magnetic studies was observed for Bi_(0.8)Tb_(0.1)Ba_(0.1)Fe_(0.9)Ti_(0.1)O_(3) ceramic.The impedance analysis confirms the non-Debye type nature of the ceramic and relaxation frequency moved to a higher temperature.The Nyquist plot and conductivity studies showed the NTCR behavior of samples.The highest magnetization field was found at temperature-268.15℃.
基金supported by the Fundamental Research Funds for the Central Universities(No.20CX05005A)the Major Scientific and Technological Projects of CNPC(No.ZD2019-184-001)+2 种基金the PetroChina Innovation Foundation(No.2018D-5007-0214)the Shandong Provincial Natural Science Foundation(No.ZR2019MEE095)the National Natural Science Foundation of China(No.42174141).
文摘Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.
文摘0.5Ba(Zr_(0.2)Ti_(0.8))O3-0.5(Ba_(0.7)Sr_(0.3))TiO3(BZT-BST)has been explored in recent times for potential applications in energy harvesting,electrocaloric and energy storage.To this end,energy harvesting/conversion and storage applications require an understanding of the conduction and loss mechanisms.The conduction mechanism in BZT-BST ceramics is studied using impedance spectroscopy(IS)at 0.1 Hz−3 MHz and 100−600°C.Impedance study reveals the presence of two types of relaxation processes due to grain and grain boundary contributions.The relaxation time and dc conductivity activation energies are obtained as 1.12/1.3 eV and 1.05/1.2eV for bulk/grain boundary,respectively,and found that oxygen vacancies dominated electrical behavior.The relaxation mechanism follows non-Debye-type behavior.The high resistance of the grain(bulk)in the ferroelectric region does not contribute to the high losses;the losses probably result from the phase transition.Also,BZT-BST ceramics exhibit a negative temperature coefficient of resistance(NTCR)behaviour.From a practical application point of view in the temperature regime of 25-65°C,the loss’s contri-bution is low.The significant contributions of loss result from the response of phase-transition in this temperature range(25-65°C)。
基金Project supported by the National Natural Science Foundation of China.
文摘The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are: (ⅰ) The dominant contributions to the electrical conductivities for crystals Ⅰ and Ⅱ are from TCNQ molecular columns, and the charge carriers are electrons. (ⅱ) The electrical conduction is mainly due to the hopping of charge carriers between the seats of lattice. (ⅲ) The considerable difference of the electrical conductivities between crystals Ⅰ and Ⅱ is due to the differences between (a) the concentrations of charge carriers n_(AⅠ)~C= 0.9988-|e|/cell and n_(AⅡ)~C=0.0340-|e|/cell; (b) the widths of the energy bands △E_(AⅠ)^(LU)=0.88 eV and △E_(AⅡ)~LU=0.040 eV; (c) the first derivative of E with respect to k, (dE/dk)_(K_FAⅠ)^(LU)=0.27 eV· and (dE/dk)_(K_FAⅡ)~LU=0.0048 eV·; and (d) the difference of energy barriers for the hopping of charge carriers ∈_Ⅱ-∈Ⅰ=2.5-8.8 kJ/mol.
文摘The conductivity of non-crystalline fast ionic conductor for B_2O_3-Li_2O-LiCl-Al_2O_3 system is studiedin this paper. The glass structure of this system is discussed by means of infrared spectrum and X-ray fluorescence analysis, and the effects of LiCl and A1_2O_3 on the conductivity of Li^+ in the system are studied as well. Adding Li_2O to the system gives rise to transfer from [BO_3] triangular units to [BO_4] tetrahedral. When Li_2O content exceeds 30mol%, the main group of the glass is the diborate group with more [BO_4] tetrahedra. The adding of LiCl has no obvious influence on the glass structure, and LiCl is under a state dissociated by network, but with the increase of LiCl, the increase of conductivity is obvious. By adding A1_2O_3, the glass can be formed when the room-temperature is cooling down,the conductivity decreases while the conductive activatory energy increases for the glass. The experiment shows that conductivity in the room-temperature is σ= 6.2×10^(-6)Ω^(-1)cm^(-1), when at 300℃, the σ=6.8×10^(-3)Ω^(-1)cm^(-1). The conductive activatory energy computed is 0.6~1.0eV.
基金Project supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB 18010401)the Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-DQC009)+2 种基金the“135”Program of the Institute of Geochemistry of CASthe Hundred-Talent Program of CASthe National Natural Science Foundation of China(Grant Nos.41474078,41774099,and 41772042)
文摘The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field.
基金supported in part by the Japan Society for the Promotion of Science (JSPS)under JSPS KAKENHI (Grant Nos.JP22K14635 and JP22H05303)a supporting program titled“Program to Support Research and Investigation on Important Basic Technologies Related to Radioactive Waste (2023 FY)”under the contract with the Ministry of Economy,Trade and Industry,Japan.
文摘Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstructure(e.g.aperture,roughness,and tortuosity),but in situ values and their anisotropy have not yet been estimated.Recent advances in geophysical techniques allow the detection of changes in electrical conductivity due to changes in crustal stress and these techniques can be used to predict subsurface fluid flow.However,the paucity of data on fractured rocks hinders the quantitative interpretation of geophysical monitoring data in the field.Therefore,considering different shear displacements and chemical erosions,an investigation was conducted into the hydraulic-electric relationship as an elevated stress change in fractures.The simulation of fracture flows was achieved using the lattice Boltzmann method,while the electrical properties were calculated through the finite element method,based on synthetic faults incorporating elastic-plastic deformation.Numerical results show that the hydraulic and electrical properties depend on the rock's geometric properties(i.e.fracture length,roughness,and shear displacement).The permeability anisotropy in the direction parallel or perpendicular to the shear displacement is also notable in high stress conditions.Conversely,the permeability econductivity(i.e.,formation factor)relationship is unique under all conditions and follows a linear trend in logarithmic coordinates.However,both matrix porosity and fracture spacing alter this relationship.Both increase the slope of the linear trend,thereby changing the sensitivity of electrical observations to permeability changes.
基金supported by the Hunan Provincial Natural Science Foundation of China (Grant no.2023JJ30632)National Key R&D Program (Grant no.2022YFC2204403)Key R&D Program of Hunan Province (Grant no.2022GK2027)。
文摘Carbon nanotubes(CNTs)with high aspect ratio and excellent electrical conduction offer huge functional improvements for current carbon aerogels.However,there remains a major challenge for achieving the on-demand shaping of carbon aerogels with tailored micro-nano structural textures and geometric features.Herein,a facile extrusion 3D printing strategy has been proposed for fabricating CNT-assembled carbon(CNT/C)aerogel nanocomposites through the extrusion printing of pseudoplastic carbomer-based inks,in which the stable dispersion of CNT nanofibers has been achieved relying on the high viscosity of carbomer microgels.After extrusion printing,the chemical solidification through polymerizing RF sols enables 3D-printed aerogel nanocomposites to display high shape fidelity in macroscopic geometries.Benefiting from the micro-nano scale assembly of CNT nanofiber networks and carbon nanoparticle networks in composite phases,3D-printed CNT/C aerogels exhibit enhanced mechanical strength(fracture strength,0.79 MPa)and typical porous structure characteristics,including low density(0.220 g cm^(-3)),high surface area(298.4 m^(2)g^(-1)),and concentrated pore diameter distribution(~32.8nm).More importantly,CNT nanofibers provide an efficient electron transport pathway,imparting 3D-printed CNT/C aerogel composites with a high electrical conductivity of 1.49 S cm^(-1).Our work would offer feasible guidelines for the design and fabrication of shape-dominated functional materials by additive manufacturing.
基金supported by the National Natural Science Foundation of China(12371211,12126359)the postgraduate Scientific Research Innovation Project of Hunan Province(XDCX2022Y054,CX20220541).
文摘We study the global unique solutions to the 2-D inhomogeneous incompressible MHD equations,with the initial data(u0,B0)being located in the critical Besov space■and the initial densityρ0 being close to a positive constant.By using weighted global estimates,maximal regularity estimates in the Lorentz space for the Stokes system,and the Lagrangian approach,we show that the 2-D MHD equations have a unique global solution.
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
文摘Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.
基金Project(51222405)supported by the National Natural Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of ChinaProject(120502001)supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.
基金Project (2009AA03Z109) supported by the National High-tech Research and Development Program of ChinaProject (09zz98) supported by Key Research and Innovation Program from Shanghai Municipal Education Commission, ChinaProjects (09dz1206401, 09dz1206402) supported by Key Project from Science and Technology Commission of Shanghai Municipality, China
文摘The Cu-Cr-Zr alloys were aged at different temperatures for different time with different current densities. The results show that both the electrical conductivity and hardness are greatly improved after being aged with current at a proper temperature. The electrical conductivity increases approximately linearly with increasing current density while the hardness remains constant. The microstructure observation reveals that a much higher density of dislocations and nanosized Cr precipitates appear after the imposition of current, which contributes to the higher electrical conductivity and hardness. The mechanism is related with three factors: 1) Joule heating due to the current, 2) migration of mass electrons, 3) solute atoms, vacancies, and dislocations promoted by electron wind force.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金Project(51274242)supported by the National Natural Science Foundation of China
文摘The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.
基金Project (2007CB210305) supported by the National Basic Research Program of ChinaProject (51074045) supported by the National Natural Science Foundation of China
文摘The electrical conductivity of NaF-AlF3-CaF2-Al2O3-ZrO2 system was studied by a tube-type cell with fixed cell constant. The results show that the electrical conductivity of NaF-AlF3-3%Al2O3-3%CaF2-ZrO2 molten salt system decreases with increase of ZrO2 content in an interval of 0-5%. The increase of 1%ZrO2 results in a corresponding electrical conductivity decrease of 0.02 S/cm, and the equivalent conductivity increases with the increase of molar ratio of NaF to AlF3. When the temperature increases by 1 °C, the electrical conductivity increases by 0.004 S/cm. At last, the regression equations of electrical conductivity relative to temperature and ZrO2 are obtained by quadratic regression analysis.
基金Project(U1034002)supported by the National Natural Science Foundation of China(NSFC)-Guangdong Natural Science Mutual Funds
文摘CuCrZr alloys were treated with the thermal stretch process at various temperatures from 100 to 300℃.The results reveal that the thermal stretch process is successfully developed to manufacture the precipitation hardening CuCrZr alloys with a good combination of microhardness and electrical conductivity.By increasing the tensile elongations at each temperature from 100 to 300℃,the microhardness increases whereas the electrical conductivity decreases slightly.Cr-containing precipitate phases with a Nishiyama-Wasserman orientation relationship to the copper matrix were observed by TEM.The achievement of high micro-hardness and acceptable electrical conductivity in the thermal stretch treated alloys is ascribed to the interactions of the heteroatom solution,dislocation increment,grain refinement and dispersive precipitation effect.