Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the pro...Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.展开更多
To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overc...To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.展开更多
This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler Lagrange equations and the Hamilton formalism of the mechanico-ele...This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler Lagrange equations and the Hamilton formalism of the mechanico-electrical systems with fractional derivatives are established. The definition and the criteria for the fractional generalized Noether quasi- symmetry are presented. Furthermore, the fractional Noether theorem and conseved quantities of the systems are obtained by virtue of the invariance of the Hamiltonian action under the infinitesimal transformations. An example is presented to illustrate the application of the results.展开更多
The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70% at water/cement (W/C) ratios of 0.4 and 0.5 during 1 day was monitored.It is found that the addition of normal aggrega...The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70% at water/cement (W/C) ratios of 0.4 and 0.5 during 1 day was monitored.It is found that the addition of normal aggregate to cement paste leads to a regular increase in concrete resistivity at each hydration stage and the electrical resistivity has a deeper increase for the lower W/C at a fixed aggregate volume fraction.The number of normalized resistivity (NR) of concrete to its paste matrix was introduced,which is only a function of aggregate volume fraction (Va).The quantitative relationships give an alternative method for the prediction of aggregate volume in the concrete.A logarithmic relation is established between the elastic modulus of concrete at 7 days or 28 days and the electrical resistivity of concrete at 1 day.The equations are obtained,the compressive strength of concrete at 7 days or 28 days can be determined by the electrical resistivity of concrete at 1 day and the used aggregate content in the concrete.The quantitative relationships give a non-destructive test (NDT) method for prediction of concrete elastic modulus and compressive strength.展开更多
This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a fill...This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a filler loading of 78 wt.%,83 wt.%and 88 wt.%and cured at 150℃and 180℃,respectively.The results show that the electrical and thermal conductivities of ECAs were improved with the increasing of filler loading and curing temperature.Adding silver NPs in silver flakes negatively affected the electrical and thermal conductivities of ECAs at a low filler mass fraction of 78 wt.%,because the segregation of NPs enlarged the average distance of silver flakes;while it positively influenced the electrical and thermal conductivities of ECAs at a loading ratio of 88 wt.%,probably due to NPs filling in the gaps between silver flakes or even sintering together with each other or with silver flakes,especially when curing at high temperature of 180℃.展开更多
In the integer-fraction principle of the digital electric charge, individual integral charge and individual fractional charge are the digital representations of the allowance and the disallowance of irreversible kinet...In the integer-fraction principle of the digital electric charge, individual integral charge and individual fractional charge are the digital representations of the allowance and the disallowance of irreversible kinetic energy, respectively. The disallowance of irreversible kinetic energy for individual fractional charge brings about the confinement of individual fractional charges to restrict irreversible movement resulted from irreversible kinetic energy. Collective fractional charges are confined by the short-distance confinement force field where the sum of the collective fractional charges is integer. As a result, fractional charges are confined and collective. The confinement force field includes gluons in QCD (quantum chromodynamics) for collective fractional charge quarks in hadrons and the magnetic flux quanta for collective fractional charge quasiparticles in the fractional quantum Hall effect (FQHE). The collectivity of fractional charges requires the attachment of energy as flux quanta to bind collective fractional charges. The integer-fraction transformation from integral charges to fractional charges consists of the three steps: 1) the attachment of an even number of flux quanta to individual integral charge fermions to form individual integral charge composite fermions, 2) the attachment of an odd number of flux quanta to individual integral charge composite fermions to form transitional collective integral charge composite bosons, and 3) the conversion of flux quanta into the confinement force field to confine collective fractional charge composite fermions converted from composite bosons. The charges of quarks are fractional, because QCD (the strong force) emerges in the universe that has no irreversible kinetic energy. Kinetic energy emerged in the universe after the emergence of the strong force. The charges of the quasiparticles in the FQHE are fractional because of the confinement by a two-dimensional system, the Landau levels, and an extremely low temperature and the collectivity by high energy magnetic flux quanta. From the integer-fraction transformation from integral charge electrons to fractional charge quarks, the calculated masses of pion, muon and constituent quarks are in excellent agreement with the observed values.展开更多
With conjecture of fractional charge quantization (quantum dipole/multiple moments), Fourier transform stretching, twisting and twigging of an electron quanta and waver strings of electron quanta, the mathematical exp...With conjecture of fractional charge quantization (quantum dipole/multiple moments), Fourier transform stretching, twisting and twigging of an electron quanta and waver strings of electron quanta, the mathematical expressions for mesoscopic fractional electron fields in a cavity of viscous medium and the associated quantum dielectric susceptibility are developed. Agreement of this approach is experimentally evidenced on barite and Fanja site molecular sieves. These findings are in conformity with experimental results of 2012 Physics Nobel prize winning scientists, Serge Haroche and David J. Wineland especially for cavity quantum electro-dynamics electron and its associated mesoscopic electric fields. The mover electron quanta strings lead to warping of space and time following the behaviour of quantum electron dynamics.展开更多
针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压...针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.展开更多
Accurate and reasonable prediction of industrial electricity consumption is of great significance for promoting regional green transformation and optimizing the energy structure.However,the regional power system is co...Accurate and reasonable prediction of industrial electricity consumption is of great significance for promoting regional green transformation and optimizing the energy structure.However,the regional power system is complicated and uncertain,affected by multiple factors including climate,population and economy.This paper incorporates structure expansion,parameter optimization and rolling mechanism into a system forecasting framework,and designs a novel rolling and fractional-ordered grey system model to forecast the industrial electricity consumption,improving the accuracy of the traditional grey models.The optimal fractional order is obtained by using the particle swarm optimization algorithm,which enhances the model adaptability.Then,the proposed model is employed to forecast and analyze the changing trend of industrial electricity consumption in Fujian province.Experimental results show that industrial electricity consumption in Fujian will maintain an upward growth and it is expected to 186.312 billion kWh in 2026.Compared with other seven benchmark prediction models,the proposed grey system model performs best in terms of both simulation and prediction performance metrics,providing scientific reference for regional energy planning and electricity market operation.展开更多
Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between g...Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.展开更多
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p...State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.展开更多
This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the ...This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%. A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT tech- nique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.展开更多
We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the ...We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the wave to spread in electrical transmission lines(s-tfETL),the time fractional complex Schrödinger(tfcS),and the space-time M-fractional Schrödinger-Hirota(s-tM-fSH)models to verify the effectiveness of the proposed approach.The implementing of the introduced new technique based on the models provides us with periodic envelope,exponentially changeable soliton envelope,rational rogue wave,periodic rogue wave,combo periodic-soliton,and combo rational-soliton solutions,which are much interesting phenomena in nonlinear sciences.Thus the results disclose that the proposed technique is very effective and straight-forward,and such solutions of the models are much more fruitful than those from the generalized Kudryashov and the modified Kudryashov methods.展开更多
Seismic and magnetotelluric field campaigns carried out across the Himalaya and the Qinghai-Tibetan Plateau show mid-crustal low resistivity and low-velocity zones.Whether these anomalies indicate that there are molte...Seismic and magnetotelluric field campaigns carried out across the Himalaya and the Qinghai-Tibetan Plateau show mid-crustal low resistivity and low-velocity zones.Whether these anomalies indicate that there are molten zones present in the Tibet crust is a focus of geophysical and petrological research.Previous interpretations of MT data to infer melt fractions are often based on presumed electrical conductivity values of partial melt.Temperature,pressure,especially water content in the melt influences the melt conductivity and affects the inferred melt fractions in areas of Tibet.So accurate constraints are essential.In addition,a variety of equations have been proposed to model the conductivity of partially molten rocks in Tibetan crust.However,different rock electrical models relate to different lithological parameters of rocks.So we need to find an appropriate rock electrical model that can apply to Tibet crust.In this study,we use a general electrical conductivity model developed by the global fitting of experimental data in previous study and set up a range of temperature,pressure,and water content for five regions in Tibet.What’s more,using three widely used rock electrical models to figure out corresponding melt fractions in areas of Tibet.We find the most applicable rock electrical model in this region and know better about the distribution and morphology of medium in Tibetan crust.展开更多
基金supported substantially by the Southwest Jiaotong University for Material and Financial Support。
文摘Graphene(Gr)has unique properties including high electrical conductivity;Thus,graphene/copper(Gr/Cu)composites have attracted increasing attention to replace traditional Cu for electrical applications. However,the problem of how to control graphene to form desired Gr/Cu composite is not well solved. This paper aims at exploring the best parameters for preparing graphene with different layers on Cu foil by chemical vapor deposition(CVD)method and studying the effects of different layers graphene on Gr/Cu composite’s electrical conductivity. Graphene grown on single-sided and double-sided copper was prepared for Gr/Cu and Gr/Cu/Gr composites. The resultant electrical conductivity of Gr/Cu composites increased with decreasing graphene layers and increasing graphene volume fraction. The Gr/Cu/Gr composite with monolayer graphene owns volume fraction of less than 0.002%,producing the best electrical conductivity up to59.8 ×10^(6)S/m,equivalent to 104.5% IACS and 105.3% pure Cu foil.
基金the National High Technology Research and Development Program of China (863 Program) (No. 2002AA616050).
文摘To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 60575055)
文摘This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler Lagrange equations and the Hamilton formalism of the mechanico-electrical systems with fractional derivatives are established. The definition and the criteria for the fractional generalized Noether quasi- symmetry are presented. Furthermore, the fractional Noether theorem and conseved quantities of the systems are obtained by virtue of the invariance of the Hamiltonian action under the infinitesimal transformations. An example is presented to illustrate the application of the results.
基金Funding by the National Natural Science Foundation of China (Nos.50778078 and 51178202)
文摘The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70% at water/cement (W/C) ratios of 0.4 and 0.5 during 1 day was monitored.It is found that the addition of normal aggregate to cement paste leads to a regular increase in concrete resistivity at each hydration stage and the electrical resistivity has a deeper increase for the lower W/C at a fixed aggregate volume fraction.The number of normalized resistivity (NR) of concrete to its paste matrix was introduced,which is only a function of aggregate volume fraction (Va).The quantitative relationships give an alternative method for the prediction of aggregate volume in the concrete.A logarithmic relation is established between the elastic modulus of concrete at 7 days or 28 days and the electrical resistivity of concrete at 1 day.The equations are obtained,the compressive strength of concrete at 7 days or 28 days can be determined by the electrical resistivity of concrete at 1 day and the used aggregate content in the concrete.The quantitative relationships give a non-destructive test (NDT) method for prediction of concrete elastic modulus and compressive strength.
基金Project was supported by the Natural Science Foundation of Guangdong Province(No.2019A1515011844)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(ZHD201801 and 31512050201).
文摘This study has been conducted to evaluate the application of silver nanoparticles(NPs)in Electrically Conductive Adhesives(ECAs),filled with hybrid silver flakes and NPs,and silver flakes as a control sample,at a filler loading of 78 wt.%,83 wt.%and 88 wt.%and cured at 150℃and 180℃,respectively.The results show that the electrical and thermal conductivities of ECAs were improved with the increasing of filler loading and curing temperature.Adding silver NPs in silver flakes negatively affected the electrical and thermal conductivities of ECAs at a low filler mass fraction of 78 wt.%,because the segregation of NPs enlarged the average distance of silver flakes;while it positively influenced the electrical and thermal conductivities of ECAs at a loading ratio of 88 wt.%,probably due to NPs filling in the gaps between silver flakes or even sintering together with each other or with silver flakes,especially when curing at high temperature of 180℃.
文摘In the integer-fraction principle of the digital electric charge, individual integral charge and individual fractional charge are the digital representations of the allowance and the disallowance of irreversible kinetic energy, respectively. The disallowance of irreversible kinetic energy for individual fractional charge brings about the confinement of individual fractional charges to restrict irreversible movement resulted from irreversible kinetic energy. Collective fractional charges are confined by the short-distance confinement force field where the sum of the collective fractional charges is integer. As a result, fractional charges are confined and collective. The confinement force field includes gluons in QCD (quantum chromodynamics) for collective fractional charge quarks in hadrons and the magnetic flux quanta for collective fractional charge quasiparticles in the fractional quantum Hall effect (FQHE). The collectivity of fractional charges requires the attachment of energy as flux quanta to bind collective fractional charges. The integer-fraction transformation from integral charges to fractional charges consists of the three steps: 1) the attachment of an even number of flux quanta to individual integral charge fermions to form individual integral charge composite fermions, 2) the attachment of an odd number of flux quanta to individual integral charge composite fermions to form transitional collective integral charge composite bosons, and 3) the conversion of flux quanta into the confinement force field to confine collective fractional charge composite fermions converted from composite bosons. The charges of quarks are fractional, because QCD (the strong force) emerges in the universe that has no irreversible kinetic energy. Kinetic energy emerged in the universe after the emergence of the strong force. The charges of the quasiparticles in the FQHE are fractional because of the confinement by a two-dimensional system, the Landau levels, and an extremely low temperature and the collectivity by high energy magnetic flux quanta. From the integer-fraction transformation from integral charge electrons to fractional charge quarks, the calculated masses of pion, muon and constituent quarks are in excellent agreement with the observed values.
文摘With conjecture of fractional charge quantization (quantum dipole/multiple moments), Fourier transform stretching, twisting and twigging of an electron quanta and waver strings of electron quanta, the mathematical expressions for mesoscopic fractional electron fields in a cavity of viscous medium and the associated quantum dielectric susceptibility are developed. Agreement of this approach is experimentally evidenced on barite and Fanja site molecular sieves. These findings are in conformity with experimental results of 2012 Physics Nobel prize winning scientists, Serge Haroche and David J. Wineland especially for cavity quantum electro-dynamics electron and its associated mesoscopic electric fields. The mover electron quanta strings lead to warping of space and time following the behaviour of quantum electron dynamics.
文摘针对外界扰动情况下的光伏并网模型预测直接功率控制(model predictive direct power control,MPDPC)系统中存在系统抖振、功率跟踪速度慢、并网电流总谐波失真率较高等问题,提出一种改进分数阶滑模电压控制器,该策略在直流侧母线电压外环采用了分数阶微积分理论.首先,构造分数阶非奇异快速终端滑模面函数,削弱系统抖振,提高系统动态性能;然后,构造分数阶双幂次指数趋近律,引入加权积分型增益和饱和函数,有效避免系统在非滑动模态阶段时切换增益的增大,提高系统控制精度;最后,设计新型分数阶电压环控制器并运用于光伏并网系统中.研究结果表明,改进后的分数阶滑模电压控制器能够满足光伏并网MPDPC系统的各项基本需求,抑制系统抖振,提高功率跟踪性能,降低并网电流总谐波失真率,有效解决可再生能源和公共电网电能转化的关键难题,对光伏并网系统高性能控制的理论研究具有重要意义.
基金supported in part by the National Social Science Fund of China under Grant No.22FGLB035Fujian Provincial Federation of Social Sciences under Grant No.FJ2023B109.
文摘Accurate and reasonable prediction of industrial electricity consumption is of great significance for promoting regional green transformation and optimizing the energy structure.However,the regional power system is complicated and uncertain,affected by multiple factors including climate,population and economy.This paper incorporates structure expansion,parameter optimization and rolling mechanism into a system forecasting framework,and designs a novel rolling and fractional-ordered grey system model to forecast the industrial electricity consumption,improving the accuracy of the traditional grey models.The optimal fractional order is obtained by using the particle swarm optimization algorithm,which enhances the model adaptability.Then,the proposed model is employed to forecast and analyze the changing trend of industrial electricity consumption in Fujian province.Experimental results show that industrial electricity consumption in Fujian will maintain an upward growth and it is expected to 186.312 billion kWh in 2026.Compared with other seven benchmark prediction models,the proposed grey system model performs best in terms of both simulation and prediction performance metrics,providing scientific reference for regional energy planning and electricity market operation.
基金Project (No. 2001AA413210) supported by the Hi-Tech Researchand Development Program (863) of China
文摘Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.
基金Beijing Municipal Natural Science Foundation of China(Grant No.3182035)National Natural Science Foundation of China(Grant No.51877009).
文摘State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.
基金Project (No. 15933) supported by the Royal Society-Chinese Acad-emy of Sciences Joint Project
文摘This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%. A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT tech- nique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.
文摘We introduce a new integral scheme namely improved Kudryashov method for solving any nonlinear fractional differential model.Specifically,we apply the approach to the nonlinear space-time fractional model leading the wave to spread in electrical transmission lines(s-tfETL),the time fractional complex Schrödinger(tfcS),and the space-time M-fractional Schrödinger-Hirota(s-tM-fSH)models to verify the effectiveness of the proposed approach.The implementing of the introduced new technique based on the models provides us with periodic envelope,exponentially changeable soliton envelope,rational rogue wave,periodic rogue wave,combo periodic-soliton,and combo rational-soliton solutions,which are much interesting phenomena in nonlinear sciences.Thus the results disclose that the proposed technique is very effective and straight-forward,and such solutions of the models are much more fruitful than those from the generalized Kudryashov and the modified Kudryashov methods.
文摘Seismic and magnetotelluric field campaigns carried out across the Himalaya and the Qinghai-Tibetan Plateau show mid-crustal low resistivity and low-velocity zones.Whether these anomalies indicate that there are molten zones present in the Tibet crust is a focus of geophysical and petrological research.Previous interpretations of MT data to infer melt fractions are often based on presumed electrical conductivity values of partial melt.Temperature,pressure,especially water content in the melt influences the melt conductivity and affects the inferred melt fractions in areas of Tibet.So accurate constraints are essential.In addition,a variety of equations have been proposed to model the conductivity of partially molten rocks in Tibetan crust.However,different rock electrical models relate to different lithological parameters of rocks.So we need to find an appropriate rock electrical model that can apply to Tibet crust.In this study,we use a general electrical conductivity model developed by the global fitting of experimental data in previous study and set up a range of temperature,pressure,and water content for five regions in Tibet.What’s more,using three widely used rock electrical models to figure out corresponding melt fractions in areas of Tibet.We find the most applicable rock electrical model in this region and know better about the distribution and morphology of medium in Tibetan crust.