In many regions,international power system interconnections provide economic,energy-security,environmental,and technical benefits.In contrast,such interconnections remain scarce in Northeast Asia.In 2016,after approvi...In many regions,international power system interconnections provide economic,energy-security,environmental,and technical benefits.In contrast,such interconnections remain scarce in Northeast Asia.In 2016,after approving a joint memorandum of understanding between major electric power companies from China,Japan,South Korea,and Russia,related initiatives regained momentum in the region.Nevertheless,the corresponding developments in Japan remain limited,mainly owing to the lack of involvement of Japanese electric power companies.This study represents a pioneering attempt to provide an economic assessment based on power exchange prices of a power system interconnection between Japan and South Korea regarding the competitiveness of electric power companies in terms of competitive business segments and strategic consequences.We found that although the position of Japanese generators may slightly deteriorate,that of the supply segment would substantially improve,thus suggesting that more opportunities than threats are derived from the interconnection.This promising outcome may foster the adoption of an interconnection with South Korea considering the positive economic and business perspectives in Japan.Furthermore,realizing the interconnection may improve the energy security and air quality in the region.展开更多
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d...Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.展开更多
This study analyzes the process of electric power system integration in various regions worldwide.This process is implemented by creating both interstate electric ties and power grids.The analysis is comprehensive and...This study analyzes the process of electric power system integration in various regions worldwide.This process is implemented by creating both interstate electric ties and power grids.The analysis is comprehensive and examines the system,spatial,technical,organizational,and market aspects of the integration.Various countries,including developed countries such as Europe and North America,as well as economically developing countries such as Central America and Africa,are involved in this process.However,the rates and scales of electric power integration differ across various regions worldwide.The analysis shows that the process of electric power integration,which has decades of history,is still ongoing,despite the growth of other trends,such as the development of distributed generation.Further electricity integration is expected to lead to the formation of a global power interconnection in the long term.展开更多
An optical waveguide interconnect mesh network scheme for parallel multiprocessor systems based on an electro-optical printed circuit board (EOPCB) with multimode polymer waveguide is proposed. The system consists o...An optical waveguide interconnect mesh network scheme for parallel multiprocessor systems based on an electro-optical printed circuit board (EOPCB) with multimode polymer waveguide is proposed. The system consists of 2×2 processor element chips interconnected in a mesh network configuration. An additional layer with optical waveguide structure is embedded in a conventional printed circuit board to construct the EOPCB. Vertical cavity surface emitting laser (VCSEL)/positive intrinsic-negative (PIN) arrays are ap- plied as the optical transmitters/receivers. Three 1 ~ 12 VCSEL/PIN parallel optical transmitting/receiving modules are used to provide 32 input/output optical channels required by the 2~2 chip-to-chip optical mesh interconnect system. The data rate in each optical channel is 3.125 Gbps and thus 10 Gbps parallel optical interconnect link for each direction of a chip is obtained. The optical signals from a processor element chip can be transmitted to another chip through optical waveguide interconnect embedded in the board. Thus the optical interconnect mesh network for parallel multiprocessor system can be implemented.展开更多
文摘In many regions,international power system interconnections provide economic,energy-security,environmental,and technical benefits.In contrast,such interconnections remain scarce in Northeast Asia.In 2016,after approving a joint memorandum of understanding between major electric power companies from China,Japan,South Korea,and Russia,related initiatives regained momentum in the region.Nevertheless,the corresponding developments in Japan remain limited,mainly owing to the lack of involvement of Japanese electric power companies.This study represents a pioneering attempt to provide an economic assessment based on power exchange prices of a power system interconnection between Japan and South Korea regarding the competitiveness of electric power companies in terms of competitive business segments and strategic consequences.We found that although the position of Japanese generators may slightly deteriorate,that of the supply segment would substantially improve,thus suggesting that more opportunities than threats are derived from the interconnection.This promising outcome may foster the adoption of an interconnection with South Korea considering the positive economic and business perspectives in Japan.Furthermore,realizing the interconnection may improve the energy security and air quality in the region.
基金the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center(No.02170000-K02013017)project of National Natural Science Foundation of China(No.61721005)
文摘Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.
基金the State Assignment Project(No.FWEU-2021-0001)of the Fundamental Research Program of the Russian Federation 2021-2030.
文摘This study analyzes the process of electric power system integration in various regions worldwide.This process is implemented by creating both interstate electric ties and power grids.The analysis is comprehensive and examines the system,spatial,technical,organizational,and market aspects of the integration.Various countries,including developed countries such as Europe and North America,as well as economically developing countries such as Central America and Africa,are involved in this process.However,the rates and scales of electric power integration differ across various regions worldwide.The analysis shows that the process of electric power integration,which has decades of history,is still ongoing,despite the growth of other trends,such as the development of distributed generation.Further electricity integration is expected to lead to the formation of a global power interconnection in the long term.
基金supported by the National Natural Science Foundation of China(No.60677023)the National"863"Program of China(No.2006AA01Z240).
文摘An optical waveguide interconnect mesh network scheme for parallel multiprocessor systems based on an electro-optical printed circuit board (EOPCB) with multimode polymer waveguide is proposed. The system consists of 2×2 processor element chips interconnected in a mesh network configuration. An additional layer with optical waveguide structure is embedded in a conventional printed circuit board to construct the EOPCB. Vertical cavity surface emitting laser (VCSEL)/positive intrinsic-negative (PIN) arrays are ap- plied as the optical transmitters/receivers. Three 1 ~ 12 VCSEL/PIN parallel optical transmitting/receiving modules are used to provide 32 input/output optical channels required by the 2~2 chip-to-chip optical mesh interconnect system. The data rate in each optical channel is 3.125 Gbps and thus 10 Gbps parallel optical interconnect link for each direction of a chip is obtained. The optical signals from a processor element chip can be transmitted to another chip through optical waveguide interconnect embedded in the board. Thus the optical interconnect mesh network for parallel multiprocessor system can be implemented.