A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
Pd@Ru bimetallic nanoparticles deposited on carbon black electro-catalysts have been fabricated by microwave-assisted polyol reduction method and investigated for methanol electro-oxidation (MEO). The structure and ...Pd@Ru bimetallic nanoparticles deposited on carbon black electro-catalysts have been fabricated by microwave-assisted polyol reduction method and investigated for methanol electro-oxidation (MEO). The structure and electro-catalytic properties of the as-prepared catalysts were characterized by XRD, SEM, TEM and cyclic voltammetry (CV) techniques. The results showed that the introduction of Ru element (2-10 wt%) into Pd 20 wt%/C (hereafter, denoted as Pd/C) produced a series of core-shell structured binary catalysts. Pd@Ru 5 wt%/C (hereafter, denoted as Pd@Rus/C) catalyst displayed the highest catalytic activity towards MEO. And the mass activity of Pd@Ru5/C electrode catalyst at E = -0.038 V (vs. Hg/HgO) was 1.42 times higher than that of Pd/C electrode catalyst. In addition, the relationship between the catalytic stability for MEO on Pd@Ru/C catalysts and the value of dbp/dfp (the ratio of MEO peak current density in the negative scan and positive scan) were also investigated. The result demonstrated that Pd@Rus/C offering the smallest value of Jbp/Jfp displayed the best stable catalytic performance.展开更多
The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enab...The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enables the electro-hydraulic speed servo to respond to a step command without steady-state error, and also to follow successfully a sinusoidal command at the frequency higher than that the system resulted from traditional design can reach. The numerical example-based comparison in dynamic and static behavior shows also the PDF system is superior to the traditional system in terms of both the capability of handling loads applied to the system and the robustness to ignore variation and uncertainty of the parameters of the hydraulic valve-actuator unit in operation.展开更多
Lead dioxide electrodes on Ti substrates were prepared by thermal-deposition or electro-deposition. The amount of hydroxyl radicals generated at the electrodes prepared by the above-mentioned two methods was compared ...Lead dioxide electrodes on Ti substrates were prepared by thermal-deposition or electro-deposition. The amount of hydroxyl radicals generated at the electrodes prepared by the above-mentioned two methods was compared with that at the electrodes mingled with Bi or La prepared by electro-deposition. The experimental results indicate that the highest concentration of hydroxyl radicals generated by thermal-deposition, electro-deposition mingled with nothing, electro-deposition mingled with Bi or La was 0.781, 1.048, 1.838 or 2.044 μmol/L, respectively. When phenol was electrolyzed on the four electrodes at a current density of 30 mA/cm2, the removal efficiency of phenol after electrolysis for 1.5 h was 87.30%, 93.55%, 97.95% or 98.70%, TOC removal efficiency after electrolysis for 5 h was 86.76%, 94.26%, 98.53% or 99.60%, respectively. Through the degradation experiments of phenol, the amount of hydroxyl radicals was responsible for the removal efficiency of phenol. The electro-catalytic characteristics were investigated by SEM, the generation amount of hydroxyl radicals, the degradation degree of phenol and the stability and conductivity of the electrodes were also investigated. The experimental results indicate that the four electrodes all show good electro-catalytic characteristics; the electro-catalytic characteristics of the electrode mingled with La were superior to those of the other three ones, and the electrochemical degradation of phenol followed one-step reaction dynamics.展开更多
The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics....The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics. The membrane, a key part of the actuator, is centrally attached to a rigid inclusion of the radius a, and then connected to a fixed rigid ring of the radius b. When subject to a pressure and a voltage, the membrane inflates into an out-of-plane shape and undergoes an inhomogeneous large deformation. The governing equations for the large deformation are derived by means of non-equilibrium thermodynamics, and viscoelasticity of the membrane is characterized by a rheological spring-dashpot model. In the simulation, effects of the pressure, the voltage, and design parameters on the electromechanical viscoelastic behaviors of the membrane are investigated. Evolutions of the considered variables and profiles of the deformed membrane are obtained numerically and illustrated graphically. The results show that electromechanical loadings and design parameters significantly influence the electro-viscoelastic behaviors of the membrane. The design parameters can be tailored to improve the performance of the membrane. The approach may provide guidelines in designing and optimizing such DE devices.展开更多
A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance i...A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.展开更多
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金supported by the National Basic Research Program of China(2013CB934001)the Natural Science Foundation of Beijing(2051001)the Natural Science Foundation of China(51074011)
文摘Pd@Ru bimetallic nanoparticles deposited on carbon black electro-catalysts have been fabricated by microwave-assisted polyol reduction method and investigated for methanol electro-oxidation (MEO). The structure and electro-catalytic properties of the as-prepared catalysts were characterized by XRD, SEM, TEM and cyclic voltammetry (CV) techniques. The results showed that the introduction of Ru element (2-10 wt%) into Pd 20 wt%/C (hereafter, denoted as Pd/C) produced a series of core-shell structured binary catalysts. Pd@Ru 5 wt%/C (hereafter, denoted as Pd@Rus/C) catalyst displayed the highest catalytic activity towards MEO. And the mass activity of Pd@Ru5/C electrode catalyst at E = -0.038 V (vs. Hg/HgO) was 1.42 times higher than that of Pd/C electrode catalyst. In addition, the relationship between the catalytic stability for MEO on Pd@Ru/C catalysts and the value of dbp/dfp (the ratio of MEO peak current density in the negative scan and positive scan) were also investigated. The result demonstrated that Pd@Rus/C offering the smallest value of Jbp/Jfp displayed the best stable catalytic performance.
基金This work is supported by National Natural Science Foundation of china under grant 59475075.
文摘The Pseudo-Derivative Feedback (PDF) algorithm is introduced into design of electro-hydraulic speed servos. With limited extra complexity in implementation of controller's electronic circuits, the PDF control enables the electro-hydraulic speed servo to respond to a step command without steady-state error, and also to follow successfully a sinusoidal command at the frequency higher than that the system resulted from traditional design can reach. The numerical example-based comparison in dynamic and static behavior shows also the PDF system is superior to the traditional system in terms of both the capability of handling loads applied to the system and the robustness to ignore variation and uncertainty of the parameters of the hydraulic valve-actuator unit in operation.
基金the Environment Bureau of Jilin Province, China(No.2006-11)Scientific Institute of Changchun City(No. 2007KZ15)985 Project of Jilin University
文摘Lead dioxide electrodes on Ti substrates were prepared by thermal-deposition or electro-deposition. The amount of hydroxyl radicals generated at the electrodes prepared by the above-mentioned two methods was compared with that at the electrodes mingled with Bi or La prepared by electro-deposition. The experimental results indicate that the highest concentration of hydroxyl radicals generated by thermal-deposition, electro-deposition mingled with nothing, electro-deposition mingled with Bi or La was 0.781, 1.048, 1.838 or 2.044 μmol/L, respectively. When phenol was electrolyzed on the four electrodes at a current density of 30 mA/cm2, the removal efficiency of phenol after electrolysis for 1.5 h was 87.30%, 93.55%, 97.95% or 98.70%, TOC removal efficiency after electrolysis for 5 h was 86.76%, 94.26%, 98.53% or 99.60%, respectively. Through the degradation experiments of phenol, the amount of hydroxyl radicals was responsible for the removal efficiency of phenol. The electro-catalytic characteristics were investigated by SEM, the generation amount of hydroxyl radicals, the degradation degree of phenol and the stability and conductivity of the electrodes were also investigated. The experimental results indicate that the four electrodes all show good electro-catalytic characteristics; the electro-catalytic characteristics of the electrode mingled with La were superior to those of the other three ones, and the electrochemical degradation of phenol followed one-step reaction dynamics.
基金Project supported by the National Natural Science Foundation of China(No.11372123)
文摘The time-dependent electro-viscoelastic performance of a circular dielectric elastomer(DE) membrane actuator containing an inclusion is investigated in the context of the nonlinear theory for viscoelastic dielectrics. The membrane, a key part of the actuator, is centrally attached to a rigid inclusion of the radius a, and then connected to a fixed rigid ring of the radius b. When subject to a pressure and a voltage, the membrane inflates into an out-of-plane shape and undergoes an inhomogeneous large deformation. The governing equations for the large deformation are derived by means of non-equilibrium thermodynamics, and viscoelasticity of the membrane is characterized by a rheological spring-dashpot model. In the simulation, effects of the pressure, the voltage, and design parameters on the electromechanical viscoelastic behaviors of the membrane are investigated. Evolutions of the considered variables and profiles of the deformed membrane are obtained numerically and illustrated graphically. The results show that electromechanical loadings and design parameters significantly influence the electro-viscoelastic behaviors of the membrane. The design parameters can be tailored to improve the performance of the membrane. The approach may provide guidelines in designing and optimizing such DE devices.
基金This work was supported by the Provincial Natural Science Foundation of Hunan(No.04JJ6033) the Research Foundation of Hunan Education Bureau (No.03C066).
文摘A sliding mode variable structure control (SMVSC) based on a coordinating optimization algorithm has been developed. Steady state error and control switching frequency are used to constitute the system performance indexes in the coordinating optimization, while the tuning rate of boundary layer width (BLW) is employed as the optimization parameter. Based on the mathematical relationship between the BLW and steady-state error, an optimized BLW tuning rate is added to the nonlinear control term of SMVSC. Simulation experiment results applied to the positioning control of an electro-hydraulic servo system show the comprehensive superiority in dynamical and static state performance by using the proposed controller is better than that by using SMVSC without optimized BLW tuning rate. This succeeds in coordinately considering both chattering reduction and high-precision control realization in SMVSC.