Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely co...Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.展开更多
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th...To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.展开更多
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital...The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa...The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.展开更多
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres...As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.展开更多
In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-lo...In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.展开更多
The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordin...The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters.展开更多
In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it...In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.展开更多
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron...This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.展开更多
A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and param...A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.展开更多
The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping a...The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the ...The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the DBD plasma control technology and hot-wire anemometer velocity measurements,a novel convenient method of local drag reduction(DR)measurement is proposed by measuring the single-point velocity within the linear region of the viscous sublayer.We analyze the premise of using the method,and the maximum effective measurement range of-73.1%<DR<42.2%is obtained according to the experimental environment in this work.The local drag decreases downstream of the center of two adjacent upper electrodes and increases downstream of the upper electrodes.The magnitude of the local DR increases with increasing voltage and decreases as it moves away from the actuators.For the spanwise position in between,the streamwise distribution of the local DR is very dependent on the voltage.The variable-interval time-average detection results reveal that all bursting intensities are reduced compared to the baseline,and the amount of reduction is comparable to the absolute values of the local DR.Compared with previous results,we infer that the control mechanism is that many meandering streaks are combined together into single stabilized streaks.展开更多
Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue...Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue resistance to cyclic motion, and noiseless operation. Nitinol has found application in tactile displays which reproduce tactile parameters such as texture and shape, depending on the application. This paper presents the effects of thermal interference between adjacent Nitinol spring actuators in a tactile display. The tactile display is made of a 3 by 3 pin array whose spatial resolution was varied from 4 mm to 6 mm in steps of 1 mm while a current of 1.5 A was used to actuate 8 of the springs, and the centre spring was left unactivated to observe the thermal effects on it due to the heat gradient formed. A Finite Element (FE) model was developed using COMSOL Multiphysics and the results were further verified through experimentation. In both cases, there was visible thermal interference between actuators. The increase in spatial resolution saw a decrease in thermal interference by 12.7%. Using a fan to introduce forced convection, reduced the thermal interference in the simulation by 20% and during experimentation by 11%. The results of this research indicate a spatial resolution of 6 mm reduced the thermal inference to a negligible rate. However, thermal interference could not be eliminated with these two methods.展开更多
This paper presents a new type of automotive braking actuator for a kind of brake-by-wire system called decentralized electro-hydraulic braking system( DEHB) to replace the traditional automobile braking system. The a...This paper presents a new type of automotive braking actuator for a kind of brake-by-wire system called decentralized electro-hydraulic braking system( DEHB) to replace the traditional automobile braking system. The actuator of this system is driven by an electrical motor instead of the conventional vacuum booster to make the brake pressure be linearity controlled quickly. Therefore,the system has the advantages of quick response speed,good control performance and simple structure. Firstly,an overview of the actuator and the whole DEHB system is shown. Secondly,the possibility of this new kind of actuator working for the system is ensured based on some braking theories. Thirdly,the appropriate dynamic simulations are done to get some results to show the relations of different parameters and the effect of braking. Eventually,the proper parameters are determined to build a test bench which shows that DEHB system can achieve the maximum pressure of 13 MPa within 100 ms after parametric optimization,and meanwhile,the actuator is able to reduce pressure quickly after maintaining high pressure. All of the bench test results can meet with the design requirements and real demand of vehicle and this actuator may improve vehicle braking effect in the future. Besides,this actuator can be widely applied to the regenerative braking system because of its linear braking performance.展开更多
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens...The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.展开更多
Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conducto...Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.展开更多
Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic a...Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.展开更多
基金supported by Research Foundation funded by Thu Dau Mot University。
文摘Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.
基金supported by National Natural Science Foundation of China (Nos.12002384, U2341277,and 52025064)Foundation Strengthening Program (No.2021JJ-0786)。
文摘To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.
基金This research was supported by the European Union’s‘Shift2Rail’through No.826255 for the project IN2TRACK2:Research into enhanced track and switch and crossing system 2
文摘The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
基金partially supported by the National Natural Science Foundation of China(62322307)Sichuan Science and Technology Program,China(2023NSFSC1968).
文摘The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.
基金financial supports from the National Natural Science Foundation of China(No.61975173)the Key Research and Development Project of Zhejiang Province(No.2022C03103,2023C01045).
文摘As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.
文摘In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.
基金Supported by the National Natural Science Foundation of China (No. U20A20332, 52175063)Hebei Province PhD Graduate Innovation Funding Project (No. CXZZBS2021121)。
文摘The hydraulic servo actuator of heavy vehicle active suspension is investigated to clarify the correlation between system parameters and the control characteristics of active suspension hydraulic servo system.Accordingly, a nonlinear physical model of electro-hydraulic servo active suspension system is built.Compared with the conventional nonlinear modeling, the model in this study considers the asymmetry of working areas caused by single rod hydraulic cylinder in the suspension system.In accordance with the model, a nonlinear output feedback controller based on backstepping is designed, and the effectiveness of the controller is proved based on the experimental platform.The dynamic response curve of the electro-hydraulic servo control system under the change of parameters is generated based on the simulation model.The sensitivity of electro-hydraulic servo control performance to the change of system physical parameters is investigated, and two evaluation indexes are proposed to quantify and compare the effect of all physical parameter changes on position control system.As revealed by the results, the position control characteristics of suspension actuator are more sensitive to the changes of flow gain of the servo valve, system supply oil pressure and effective working areas of cylinder, and the two evaluation indexes are over 10 times higher than other physical parameters.
基金supported by the National Natural Science Foundation of China(Nos.51973155,52173181,and 52173262)Jiangsu Innovation Team Program,Natural Science Foundation of Tianjin(20JCYBJC00810).
文摘In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
基金supported by the Japan Society for the Promotion of Science under KAKENHI Grant Nos.19F19379 and 20H04199。
文摘This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2012AA041801)supproted by the High-tech Research and Development Program of China
文摘A nonlinear controller based on an extended second-order disturbance observer is presented to track desired position for an electro-hydraulic single-rod actuator in the presence of both external disturbances and parameter uncertainties. The proposed extended second-order disturbance observer deals with not only the external perturbations, but also parameter uncertainties which are commonly regarded as lumped disturbances in previous researches. Besides, the outer position tracking loop is designed with cylinder load pressure as output; and the inner pressure control loop provides the hydraulic actuator the characteristic of a force generator. The stability of the closed-loop system is provided based on Lyapunov theory. The performance of the controller is verified through simulations and experiments. The results demonstrate that the proposed nonlinear position tracking controller, together with the extended second-order disturbance observer, gives an excellent tracking performance in the presence of parameter uncertainties and external disturbance.
基金National Natural Science Foundation Under Grant No.61074045,60721062the 973 Program 2006CB705400 of China
文摘The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is investigated in this paper. First, by introducing a linear varying parameter, the nonlinear system is described as a linear parameter varying (LPV) model. Second, based on this LPV model, an LMI-based condition for the system to be asymptotically stabilized is deduced. By solving these LMIs, a parameter-dependent controller is established for the closed- loop system to be stable with a prescribed level of disturbance attenuation. The condition is also extended to the uncertain case. Finally, some numerical simulations demonstrate the satisfying performance of the proposed controller.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金the financial support received from the National Science Fund for Distinguished Young Scholars(No.12102359)。
文摘The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the DBD plasma control technology and hot-wire anemometer velocity measurements,a novel convenient method of local drag reduction(DR)measurement is proposed by measuring the single-point velocity within the linear region of the viscous sublayer.We analyze the premise of using the method,and the maximum effective measurement range of-73.1%<DR<42.2%is obtained according to the experimental environment in this work.The local drag decreases downstream of the center of two adjacent upper electrodes and increases downstream of the upper electrodes.The magnitude of the local DR increases with increasing voltage and decreases as it moves away from the actuators.For the spanwise position in between,the streamwise distribution of the local DR is very dependent on the voltage.The variable-interval time-average detection results reveal that all bursting intensities are reduced compared to the baseline,and the amount of reduction is comparable to the absolute values of the local DR.Compared with previous results,we infer that the control mechanism is that many meandering streaks are combined together into single stabilized streaks.
文摘Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue resistance to cyclic motion, and noiseless operation. Nitinol has found application in tactile displays which reproduce tactile parameters such as texture and shape, depending on the application. This paper presents the effects of thermal interference between adjacent Nitinol spring actuators in a tactile display. The tactile display is made of a 3 by 3 pin array whose spatial resolution was varied from 4 mm to 6 mm in steps of 1 mm while a current of 1.5 A was used to actuate 8 of the springs, and the centre spring was left unactivated to observe the thermal effects on it due to the heat gradient formed. A Finite Element (FE) model was developed using COMSOL Multiphysics and the results were further verified through experimentation. In both cases, there was visible thermal interference between actuators. The increase in spatial resolution saw a decrease in thermal interference by 12.7%. Using a fan to introduce forced convection, reduced the thermal interference in the simulation by 20% and during experimentation by 11%. The results of this research indicate a spatial resolution of 6 mm reduced the thermal inference to a negligible rate. However, thermal interference could not be eliminated with these two methods.
基金Sponsored by the National High Technology R&D Program of China(Grant No.2012AA111204 and 2012AA110903)National Key Basic Research Program of China(Grant No.2011CB711205)Free Research Project of State Key Laboratory of Automotive Safety and Energy(Grant No.zz2011-052)
文摘This paper presents a new type of automotive braking actuator for a kind of brake-by-wire system called decentralized electro-hydraulic braking system( DEHB) to replace the traditional automobile braking system. The actuator of this system is driven by an electrical motor instead of the conventional vacuum booster to make the brake pressure be linearity controlled quickly. Therefore,the system has the advantages of quick response speed,good control performance and simple structure. Firstly,an overview of the actuator and the whole DEHB system is shown. Secondly,the possibility of this new kind of actuator working for the system is ensured based on some braking theories. Thirdly,the appropriate dynamic simulations are done to get some results to show the relations of different parameters and the effect of braking. Eventually,the proper parameters are determined to build a test bench which shows that DEHB system can achieve the maximum pressure of 13 MPa within 100 ms after parametric optimization,and meanwhile,the actuator is able to reduce pressure quickly after maintaining high pressure. All of the bench test results can meet with the design requirements and real demand of vehicle and this actuator may improve vehicle braking effect in the future. Besides,this actuator can be widely applied to the regenerative braking system because of its linear braking performance.
基金The financial support from the National Natural Science Foundation of China (32201179)Guangdong Basic and Applied Basic Research Foundation (2020A1515110126 and 2021A1515010130)+1 种基金the Fundamental Research Funds for the Central Universities (N2319005)Ningbo Science and Technology Major Project (2021Z027) is gratefully acknowledged。
文摘The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.
基金supported by the National Natural Science Foundation of China(Nos.52122511,61927814,and U20A20290)Anhui Provincial Natural Science Foundation(2308085QF218)+5 种基金China National Postdoctoral Program for Innovative Talents(BX20230351)China Postdoctoral Science Foundation(2023M733382)National Key R&D Program of China(2021YFF0502700)Major Scientific and Technological Projects in Anhui Province(202203a05020014)Fundamental Research Funds for the Central Universities(WK5290000003 and WK2090000058)Youth Innovation Promotion Association CAS(Y2021118)。
文摘Small-scale electromagnetic soft actuators are characterized by a fast response and simplecontrol,holding prospects in the field of soft and miniaturized robotics.The use of liquid metal(LM)to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness.Despite research efforts,challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance.To address these challenges,we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method.Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber(1.03 kPa),our actuator exhibits an excellent deformation angle(265.25?)and actuation bending angular velocity(284.66 rad·s^(-1)).Furthermore,multiple actuators have been combined to build an artificial gripper with a wide range of functionalities.Our actuator presents new possibilities for designing small-scaleartificial machines and supports advancements in ultrafast soft and miniaturized robotics.
基金supported by the fund of Henan Key Laboratory of Superhard Abrasives and Grinding Equipment,Henan University of Technology(Grant No.JDKFJJ2023005)the Key Science and Technology Program of Henan Province(Grant Nos.242102221001 and 232102220085)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014).
文摘Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.