期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Carbon dots modified nanoflower petals with super enhanced nitrogen electro-reduction efficiency
1
作者 Yang Zhou Xuanzhao Lu +4 位作者 Yu-chung Chang Yanwen Ma Linlin Wang Jianrong Zhang Junjie Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期406-411,共6页
Nitrogen electro-reduction reaction(NERR)is a promising alternative method for ammonia production to the Haber-Bosch approach due to mild reaction conditions and free harmful by-product emission.A formidable challenge... Nitrogen electro-reduction reaction(NERR)is a promising alternative method for ammonia production to the Haber-Bosch approach due to mild reaction conditions and free harmful by-product emission.A formidable challenge in bringing NERR closer to the practical application is developing an electrocatalyst which can simultaneously improve the Faraday efficiency and reduce the reaction over-potential.Herein,we fabricated a catalyst of nitrogen-doped carbon dots modified copper-phosphate nanoflower petals(Cu Po-NCDs NF)via a self-assembly method.The flower structure endowed the Cu Po-NCDs NF with large specific surface area,and thus enabled more active sites to be exposed.In particular,we demonstrated that the NCDs modified Cu Po petals with flower-like structure can accelerate the interfacial proton-electron transfer,suppressing the competing hydrogen evolution reaction and promoting the desired NERR process.Ultimately,for the CuPo-NCDs NF catalyzed NERR,the FE_(NH_(3))and the reaction potential both were boosted,the resultant energy efficiency of NERR reached a record-breaking value of 56.5%,and the NH_(3)yield rate increased by 7 times compared to NCDs.This study provides a novel catalyst with a new pathway to boost the NERR. 展开更多
关键词 Nitrogen-doped carbon dots Nano-flower Self-assembly Interfacial proton-electron transfer Nitrogen electro-reduction
原文传递
Dynamic structure change of Cu nanoparticles on carbon supports for CO_(2) electro-reduction toward multicarbon products 被引量:2
2
作者 Qiang Li Yehui Zhang +3 位作者 Li Shi Mingliang Wu Yixin Ouyang Jinlan Wang 《InfoMat》 SCIE CAS 2021年第11期1285-1294,共10页
Cu nanoparticles with different sizes,morphology,and surface structures exhibit distinct activity and selectivity toward CO_(2) reduction reaction,while the reactive sites and reaction mechanisms are very controversia... Cu nanoparticles with different sizes,morphology,and surface structures exhibit distinct activity and selectivity toward CO_(2) reduction reaction,while the reactive sites and reaction mechanisms are very controversial in experiments.In this study,we demonstrate the dynamic structure change of Cu clusters on graphite-like carbon supports plays an important role in the multicarbon production by combining static calculations and ab-initio molecular dynamic simulations.The mobility of Cu clusters on graphite is attributed to the near-degenerate energies of various adsorption configurations,as the interaction between Cu atoms and surface C atoms is weaker than that of Cu-Cu bonds in the tight cluster form.Such structure change of Cu clusters leads to step-like irregular surface structures and appropriate interparticle distances,increasing the selectivity of multicarbon products by reducing the energy barriers of C-C coupling effectively.In contrast,the large ratio of edge and corner sites on Cu clusters is responsible for the increased catalytic activity and selectivity for CO and H_(2) compared with Cu(100)surface,instead of hydrocarbon products like methane and ethylene.The detailed study reveals that the dynamic structure change of the catalysts results in roughened surface morphologies during catalytic reactions and plays an essential role in the selectivity of CO_(2) electro-reduction,which should be paid more attention for studies on the reaction mechanisms. 展开更多
关键词 ab-initio calculations CO_(2)electro-reduction reaction Cu clusters dynamic structure change multicarbon products
原文传递
Efficient and selective electro-reduction of nitrobenzene by the nano-structured Cu catalyst prepared by an electrodeposited method via tuning applied voltage
3
作者 Yali CHEN Lu XIONG Weikang WANG Xing ZHANG Hanqing YU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第5期897-904,共8页
Pollution caused by toxic nitrobenzene has been a widespread environmental concern. Selective reduction of nitrobenzene to aniline is beneficial to further efficient and cost-effective biologic treatment. Electro- che... Pollution caused by toxic nitrobenzene has been a widespread environmental concern. Selective reduction of nitrobenzene to aniline is beneficial to further efficient and cost-effective biologic treatment. Electro- chemical reduction is a promising method and Cu-based catalysts have been found to be an efficient cathode material for this purpose. In this work, Cu catalysts with different morphologies were fabricated on Ti plate using a facile electrodepositon method via tuning the applied voltage. The dendritic nano-structured Cu catalysts obtained at high applied voltages exhibited an excellent efficiency and selectivity toward the reduction of nitro- benzene to aniline. Effects of the working potential and initial nitrobenzene concentration on the selective reduction of nitrobenzene to aniline using the Cu/Ti electrode were investigated. A high rate constant of 0.0251 mini and 97.1% aniline selectivity were achieved. The fabri- cated nano-structured Cu catalysts also exhibited good stability. This work provides a facile way to prepare highly efficient, cost-effective, and stable nano-sWuctured electro- catalysts for pollutant reduction. 展开更多
关键词 NITROBENZENE nano-structured Cu electro-reduction voltage-dependent electrodeposition high selec-tivity high stability
原文传递
Electro-reduction of Tetraphenylporphyrin (H_2TPP) and Its Eu(Ⅲ)-TPP Complex in Acetone——The Influence of Dissolved Oxygen
4
作者 黄云辉 关福玉 高小霞 《Chinese Science Bulletin》 SCIE EI CAS 1993年第9期738-742,共5页
1 Introduction It is rather difficult for the rare earth ions to form complex with water-soluble porphyrins (e.g.TPPS<sub>4</sub>) in aqueous solution. In this note the formation of Eu(Ⅲ)TPP is conduc... 1 Introduction It is rather difficult for the rare earth ions to form complex with water-soluble porphyrins (e.g.TPPS<sub>4</sub>) in aqueous solution. In this note the formation of Eu(Ⅲ)TPP is conducted by introducing equal-molar concentrations of Eu(ClO<sub>4</sub>)<sub>3</sub> and H<sub>2</sub>TPP into an acetone solution with 0.1 mol/L TEAP to obtain the 1: 1 complex. This complex is reduced with a peak potential at -0.28 V (vs. Ag/AgCl) in voltammetry, and it is found out that Eu<sup>3+</sup>-TPP is reduced to Eu<sup>2+</sup>-TPP. The height of the peak is directly propor- 展开更多
关键词 ACETONE electro-reduction H2TPP Eu(Ⅲ)-TPP dissolved oxygen
原文传递
Precise electro-reduction of alkyl halides for radical defluorinative alkylation
5
作者 Xingxiu Yan Shengchun Wang +6 位作者 Zhao Liu Yujie Luo Pengjie Wang Wenyan Shi Xiaotian Qi Zhiliang Huang Aiwen Lei 《Science China Chemistry》 SCIE EI CSCD 2022年第4期762-770,共9页
Reported here is a precise electro-reduction strategy for radical defluorinative alkylation towards the synthesis of gem-difluoroalkenes from α-trifluoromethylstyrenes. According to the redox-potential difference of ... Reported here is a precise electro-reduction strategy for radical defluorinative alkylation towards the synthesis of gem-difluoroalkenes from α-trifluoromethylstyrenes. According to the redox-potential difference of the radical precursors, direct or indirect electrolysis is respectively adopted to realize the precise reduction. An easy-to-handle, catalyst-and metal-free condition is developed for the reduction of alkyl radical precursors that are generally easier to be reduced than α-trifluoromethylstyrenes,while a novel electro-Ni-catalytic system is established for the electro-reduction of alkyl bromides or chlorides towards the electrochemical synthesis of gem-difluoroalkenes. The merit of this protocol is exhibited by its mild conditions, wide substrate scope, and scalable preparation. Mechanistic studies and DFT calculations proved that the coordination of α-trifluoromethylstyrenes to Ni-catalyst prevents the direct reduction of the alkene and, in turn, promotes the activation of alkyl bromide through halogen atom transfer mechanism. 展开更多
关键词 electro-reductive cross-coupling gem-difluoroalkenes radical defluorinative alkylation electro/nickel catalysis C-C bonds formation
原文传递
Ionic liquids for CO_(2) electrochemical reduction 被引量:5
6
作者 Fangfang Li Francesca Mocci +2 位作者 Xiangping Zhang Xiaoyan Ji Aatto Laaksonen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期75-93,共19页
Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energ... Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energy in value-added chemicals and fuels.Ionic liquids(ILs),as medium and catalysts(or supporting part of catalysts)have been given wide attention in the electrochemical CO_(2) reduction reaction(CO_(2) RR)due to their unique advantages in lowering overpotential and improving the product selectivity,as well as their designable and tunable properties.In this review,we have summarized the recent progress of CO_(2) electro-reduction in IL-based electrolytes to produce higher-value chemicals.We then have highlighted the unique enhancing effect of ILs on CO_(2) RR as templates,precursors,and surface functional moieties of electrocatalytic materials.Finally,computational chemistry tools utilized to understand how the ILs facilitate the CO_(2) RR or to propose the reaction mechanisms,generated intermediates and products have been discussed. 展开更多
关键词 Carbon dioxide Ionic liquids electro-reduction ELECTROLYTE Electrocatalytic material Computer simulation
下载PDF
Direct electrochemical reduction of copper sulfide in molten borax 被引量:4
7
作者 Levent Kartal Servet Timur 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期992-998,共7页
In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current de... In this study,for the first time,direct copper production from copper sulfide was carried out via direct electrochemical reduction method using inexpensive and stable molten borax electrolyte.The effects of current density(100–800 mA/cm^2)and electrolysis time(15–90 min)on both the cathodic current efficiency and copper yield were systematically investigated in consideration of possible electrochemical/chemical reactions at 1200℃.The copper production yield reached 98.09%after 90 min of electrolysis at a current density of 600 mA/cm^2.Direct metal production was shown to be possible with 6 kWh/kg energy consumption at a 600 mA/cm2 current density,at which the highest current efficiency(41%)was obtained.The suggested method can also be applied to metal/alloy production from single-and mixed-metal sulfides coming from primary production and precipitated sulfides,which are produced in the mining and metallurgical industries during treatment of process solutions or wastewaters. 展开更多
关键词 MOLTEN salt ELECTROLYSIS electro-reduction COPPER extraction COPPER SULFIDE BORAX
下载PDF
Gas-phase electrocatalytic conversion of CO_2 to chemicals on sputtered Cu and Cu–C catalysts electrodes 被引量:3
8
作者 N.Gutiérrez-Guerra J.A.González +3 位作者 J.C.Serrano-Ruiz E.López-Fernández J.L.Valverde A.de Lucas-Consuegra 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期46-53,共8页
A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and C... A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and Cu–C)were prepared by physical vapor deposition method(sputtering)and subsequently employed for the gas-phase electroreduction of CO_2at different temperatures(70–90°C).The prepared electrodes Cu and Cu–C were characterized by X-ray diffraction(XRD),X-ray photoemission spectroscopy(XPS)and scanning electron microscopy(SEM).As revealed,Cu is partially oxidized on the surface of the samples and the Cu and Cu–C cathodic catalysts were comprised of a porous,continuous,and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm,respectively.The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated.Among the two investigated electrodes,the pure Cu catalyst film showed the highest CO_2specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu–C electrode,which was attributed to the higher particle size of the former and lower Cu O/Cu ratio.The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO_2into valuable products using low metal loading Cu based electrodes(0.5 mg Cu cm^(-2))prepared by sputtering. 展开更多
关键词 C02 VALORIZATION electro-reduction CU catalyst PEM Selectivity Methanol production
下载PDF
Electrochemical preparation of the Fe-Ni36 Invar alloy from a mixed oxides precursor in molten carbonates 被引量:3
9
作者 Yan-peng Dou Di-yong Tang +1 位作者 Hua-yi Yin Di-hua Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第12期1695-1702,共8页
The Fe-Ni36 alloy was prepared via the one-step electrolysis of a mixed oxides precursor in a molten Na2CO3-K2CO3 eutectic melt at 750℃,where porous Fe_(2)O_(3)-NiO pellets served as the cathode and the Ni10 Cu11 Fe ... The Fe-Ni36 alloy was prepared via the one-step electrolysis of a mixed oxides precursor in a molten Na2CO3-K2CO3 eutectic melt at 750℃,where porous Fe_(2)O_(3)-NiO pellets served as the cathode and the Ni10 Cu11 Fe alloy was an inert anode.During the electrolysis,Ni O was preferentially electro-reduced to Ni,then Fe_(2)O_(3)was reduced and simultaneously alloyed with nickel to form the Fe-Ni36 alloy.Different cell voltages were applied to optimize the electrolytic conditions,and a relatively low energy consumption of 2.48 k W·h·kg^(-1) for production of Fe Ni36 alloy was achieved under 1.9 V with a high current efficiency of 94.6%.The particle size of the alloy was found to be much smaller than that of the individual metal.This process provides a low-carbon technology for preparing the Fe-Ni36 alloy via molten carbonates electrolysis. 展开更多
关键词 molten carbonates cyclic voltammetry electro-reduction inert anode Invar36 alloy
下载PDF
Electrolysis of Converter Matte in Molten CaCl<sub>2</sub>-NaCl
10
作者 Dan Wang Changyuan Lu +3 位作者 Xingli Zou Kai Zheng Zhongfu Zhou Xionggang Lu 《Journal of Materials Science and Chemical Engineering》 2018年第2期1-11,共11页
The electrolytic production of nickel-copper alloy by electrochemical reduction of converter matte in molten salt has been investigated. The sintered solid porous pellets of Ni3S2, Cu2S and converter matte were electr... The electrolytic production of nickel-copper alloy by electrochemical reduction of converter matte in molten salt has been investigated. The sintered solid porous pellets of Ni3S2, Cu2S and converter matte were electrolyzed at a voltage of 3.0 V in molten CaCl2-NaCl under the protection of argon gas at 700℃, respectively. The electro-reduction processes were investigated and the products were characterized. The results show that the molten salt electro-reduction process can be used to produce nickel, copper and nickel-copper alloy directly from Ni3S2, Cu2S and converter matte precursors in molten CaCl2-NaCl, respectively. CaS would be formed as the intermediate compound during the electro-reduction process, and then the formed CaS can be gradually decomposed and removed with the increase of the electrolysis time. The experimental results show that the molten salt electro-reduction process has the potential to be used for the reduction of sulfide minerals in molten CaCl2-NaCl. 展开更多
关键词 CONVERTER MATTE electro-reduction Nickel-Copper Alloy MOLTEN CaCl2-NaCl Solid-State Electrochemistry
下载PDF
Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study
11
作者 Chaozheng He Jia Wang +1 位作者 Ling Fu Wei Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期428-433,共6页
Electrocatalytic synthesis of ammonia as an environment-friendly and sustainable development method has received widespread attention in recent years.Two-dimensional(2D)materials are a promising catalyst for ammonia s... Electrocatalytic synthesis of ammonia as an environment-friendly and sustainable development method has received widespread attention in recent years.Two-dimensional(2D)materials are a promising catalyst for ammonia synthesis due to their large surface area.In this work,we have constructed a series of 2D metal borides(MBenes)with transition metal(TM)defects(TMd-MBenes)and comprehensively calculated the reactivity of electrocatalytic synthesis of ammonia-based on density functional theory.The results have demonstrated that the TMd-MBenes can effectively activate nitrogen oxide(NO)and nitrogen(N2)molecules thermodynamically.Particularly interesting,the co-chemisorption of O atoms,dissociated from NO,can facilitate the spilled of the inert N2 molecules into single N atoms,which can further hydrogenate into ammonia easily with an ultralow limiting potential of 0.59 V on TMd-MnB.Our research has not only provided clues for catalyst design for experimental study but also paved the way for the industrial application of electrocatalytic ammonia synthesis. 展开更多
关键词 2D mbenes Nitrogen electro-reduction DFT N_(2)activation Ammonia synthesis
原文传递
Electro-reductive C-H cyanoalkylation of quinoxalin-2(1H)-ones
12
作者 Ling Ding Kaikai Niu +1 位作者 Yuxiu Liu Qingmin Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期4057-4060,共4页
Herein,we report a practical electro-reductive protocol for the direct C-H cyanoalkylation of quinoxalin-2(1 H)-ones via iminyl radical-mediated ring opening.These mild reactions proceed under metal-,reductant-,and re... Herein,we report a practical electro-reductive protocol for the direct C-H cyanoalkylation of quinoxalin-2(1 H)-ones via iminyl radical-mediated ring opening.These mild reactions proceed under metal-,reductant-,and reagent-free conditions to provide synthetically useful cyanoalkylated quinoxalin-2(1 H)-ones. 展开更多
关键词 electro-reductive C-H cyanoalkylation Reductant-free Quinoxalin-2(1H)-ones Ring-opening
原文传递
Direct Reduction of Solid Fe_2O_3 in Molten CaCl_2 by Potentially Green Process 被引量:5
13
作者 Guoming Li Dihua Wang Zhen Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第6期767-771,共5页
Sintered (300℃) porous pellets of Fe2O3 were electrolyzed to Fe in molten CaCl2 (800-900℃) under argon at 1.8-3.2 V for 2-20 h. The laboratory scale experiments show that it was a potentially direct green method... Sintered (300℃) porous pellets of Fe2O3 were electrolyzed to Fe in molten CaCl2 (800-900℃) under argon at 1.8-3.2 V for 2-20 h. The laboratory scale experiments show that it was a potentially direct green method to produce Fe powder. At lower electrolysis voltage (〈2.2 V), higher current efficiency (〉90%) and smaller energy consumption (-3.0 kWh/kg) can be obtained. When the electrolysis voltage was above 2.4 V, the deposition of metal Ca from the salt lowered the current efficiency and increased the energy consumption. The electrolysis voltage also had effects on the micrographs of the reduced powder. The cubic particles can be seen in the products at the voltage lower than 2.2 V; when the voltage was higher than 2.2 V, it was nodular. The reduction proceeds at the cathode in two steps, i.e., from Fe2O3 to FeO and then to Fe. The oxygen emits at the anode. The process is potentially free of carbon emission and produces two useful products at both cathode and anode, promising a zero-emission technology for the extractive metallurgical industry. 展开更多
关键词 electro-reduction Ferric oxide Iron powder Molten calcium chloride
原文传递
Electrochemical Reduction of Nitrobenzene in Ionic Liquid BMImAc 被引量:2
14
作者 ZHANG Yinxu MAO Xinbiao REN Shuying MA Chunan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2014年第2期293-296,共4页
Ionic liquid,1-butyl-3-methylimidazolium acetate(BMImAc),was used in the electrochemical reduction of nitrobenzene.The electro-reduction of nitrobenzene on platinum electrode was studied by cyclic voltammetry(CV),... Ionic liquid,1-butyl-3-methylimidazolium acetate(BMImAc),was used in the electrochemical reduction of nitrobenzene.The electro-reduction of nitrobenzene on platinum electrode was studied by cyclic voltammetry(CV),in situ Fourier transform infrared(FTIR) spectroscopy and constant-potential electrolysis.The experimental results show that electrochemical reduction process of nitrobenzene was controlled by diffusion,the main reduction product was azobenzen at-1.45 V,and the influences of scan rate and temperature on the electrochemical behaviors were obviously.A reduction mechanism of nitrobenzene in an ionic liquid was a probable ‘nitrobenzene→nitrosobenzene→azobenzene→aniline' main reductive reaction route. 展开更多
关键词 NITROBENZENE BMImAc electro-reduction In situ Fourier transform infrared spectroscopy
原文传递
Rare earth metal oxides as BH_4^--tolerance cathode electrocatalysts for direct borohydride fuel cells
15
作者 倪学敏 王雅东 +2 位作者 郭峰 姚佩 潘牧 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第5期437-441,共5页
Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction... Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH 4-in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm 2.The DBFC using Sm 2 O 3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm 2 was obtained at the cell voltage of 0.52 V. 展开更多
关键词 direct borohydride fuel cell oxygen electro-reduction rare earth oxide membraneless DBFC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部