期刊文献+
共找到79,350篇文章
< 1 2 250 >
每页显示 20 50 100
Characterization and wear behavior of WC-0.8Co coating on cast steel rolls by electro-spark deposition 被引量:12
1
作者 Jian-sheng Wang Hui-min Meng Hong-ying Yu Zi-shuan Fan Dong-bai Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第6期707-713,共7页
To prepare high wear resistance and high hardness coatings, electro-spark deposition was adopted for depositing an electrode of a mixture of 92wt%WC+8wt%Co on a cast steel roll substrate. The coating was characterize... To prepare high wear resistance and high hardness coatings, electro-spark deposition was adopted for depositing an electrode of a mixture of 92wt%WC+8wt%Co on a cast steel roll substrate. The coating was characterized by classical X-ray diffractometer (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The results indicate that the coating shows nanosized particulate structure and dendritic structure including columnar structure and equiaxed structure. The primary phases of the coating contain Fe3W3C, Co3W3C, Fe2C and Si2W. The coating has a low friction coefficient of 0.13, its average wear-resistance is 3.3 times that of the cast steel roll substrate and the main mechanism is abrasive wear. The maximum microhardness value of the coating is about 1573.9 Hv0.3. The study reveals that the electro-spark deposition process has the characteristic of better coating quality and the coating has higher wear resistance and hardness. 展开更多
关键词 electro-spark deposition (ESD) WC-Co coatings microstructure wear resistance
下载PDF
Tribological properties of cobalt-based alloy coating with different cobalt contents by electro-spark deposition 被引量:3
2
作者 Qi-Feng Jing Ye-Fa Tan 《Rare Metals》 SCIE EI CAS CSCD 2013年第1期40-46,共7页
The cobalt-based alloy coating with different Co contents was deposited on 45 steel by electro-spark deposition with the self-made electrode. The coating has a compact and uniform microstructure with low porosity and ... The cobalt-based alloy coating with different Co contents was deposited on 45 steel by electro-spark deposition with the self-made electrode. The coating has a compact and uniform microstructure with low porosity and no visible microcracks. When Co content increases grad- ually, oxygen content of coating samples 1-5 decreases first and then increases in the range of 2.52 wt%-3.05 wt%; sample 3 has the lowest oxygen content of 2.52 %. Mi- crohardness of the coating is improved remarkably com- pared with the substrate (HV 230.18). With Co content increasing, microhardness of the coating samples 1-5 first rises slightly and then declines rapidly in the range of HV 580.61-1052.33. Sample 3 gets the maximum of HV 1052.33, which is about 4.6 times that of the substrate. The coating presents excellent wear resistance, which first increases and then decreases when Co content increases. Sample 3 shows the best wear resistance of about 6.4 times that of the substrate. Main wear mechanism of the coating is abrasive wear and fatigue wear, along with oxidation wear under high speed or heavy load conditions. 展开更多
关键词 electro-spark deposition COBALT CONTENT MICROSTRUCTURE Wear resistance Wear mechanism
下载PDF
Wear characteristics of spheroidal graphite roll WC-8Co coating produced by electro-spark deposition 被引量:21
3
作者 WANG Jiansheng, MENG Huimin, YU Hongying, FAN Zishuan, and SUN Dongbai School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第2期174-179,共6页
Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were inv... Electro-spark deposition(ESD) was adopted for preparing high property coatings by depositing WC-8Co cemented carbide on an spheroidal graphite roll substrate.The microstructure and properties of the coating were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) with energy dispersive X-ray(EDX) and ball-disc configuration wear tester.The results show that nanosized particles and amorphous structures prevail in the coating which is metallurgically bonded to the substrate.The microstructures of the transition zone include columnar structure and equiaxed structure.The primary phases of the coating contain W2C, W6C2.54, Fe3W3C, and Co3W3C.The results of abrasive test show that the coating has low friction coefficients(μaverage = 0.18) and the wear mechanisms are mainly abrasive wear, fatigue wear, and oxidation wear.The maximum microhardness value of the coating is about 17410 N/mm2.The study reveals that the electro-spark deposition process has better coating quality and the coating has high wear resistance and hardness. 展开更多
关键词 electro-spark deposition WC/Co coatings wear resistance microstructure
下载PDF
Interface behavior and microstructure transformation of welded joint of 35CrMo steel by electro-spark deposition 被引量:4
4
作者 张富巨 马立卿 +1 位作者 张国栋 孙峰 《China Welding》 EI CAS 2005年第1期15-18,共4页
Electro-spark deposition has been carried out on the 35CrMo steel by filling and restoring the simulated slot specimens, and continuous surface coating with extra low porosity was obtained with proper parameters. The ... Electro-spark deposition has been carried out on the 35CrMo steel by filling and restoring the simulated slot specimens, and continuous surface coating with extra low porosity was obtained with proper parameters. The microstructure transformation and interface behavior of deposited joint were observed and analyzed. It shows that a transition region with 15μm in depth was obtained between base metal and deposited metal, and metallurgical bonding was achieved between restored base metal and deposition coating. 展开更多
关键词 electro-spark deposition transition region metallurgical bonding
下载PDF
Unweldable superalloy component repair using electro-spark deposition with high strength filler material 被引量:1
5
作者 谢玉江 王茂才 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期359-364,共6页
Nickel-base superalloy components with high Al+Ti content are difficult to weld repair using high strength filler materials with conventional welding methods like TIG welding. A feasibility study of electro-spark depo... Nickel-base superalloy components with high Al+Ti content are difficult to weld repair using high strength filler materials with conventional welding methods like TIG welding. A feasibility study of electro-spark deposition (ESD) for unweldable superalloy component repair with a high strength filler material was carried out. SEM analysis reveals that a fully dense, crack-free, metallurgical bonded deposition layer can be obtained on the K24 substrate. The as-deposited microstructure characterizes fine cellular structure and the post weld heat treatment precipitates fine γ′particles. The room temperature tensile testing and 975℃, 196MPa stress rupture life testing indicate that ESD makes positively contribution to mechanical performance of repaired specimens. Based on these results, ESD has the potential as an effective alternative to repair of damage and defects in superalloy components, but more efforts should be made before it can be applied in engineering repair. 展开更多
关键词 SUPERALLOY electro-spark deposition REPAIR
下载PDF
Mechanism of Building-Up Deposited Layer during Electro-Spark Deposition 被引量:1
6
作者 Amin D. Thamer Mohammed H. Hafiz Baha S. Mahdi 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第4期258-263,共6页
This paper studies the mechanism of formation of the deposit layer by (ESD) electro-spark deposition process. Inconel 738 substrates are coated with a deposited layer of NI6625 (Inconel 625). Selections of these two a... This paper studies the mechanism of formation of the deposit layer by (ESD) electro-spark deposition process. Inconel 738 substrates are coated with a deposited layer of NI6625 (Inconel 625). Selections of these two alloys have been done because they had wide applications and importance in the industry especially in gas turban blades in inland stations and in aircraft engines. ESD is suggested because it has a low input heat process which eliminates the effect of HAZ in these Ni-superfluous due to their sustainability to micro-cracks. The coating contains many deposited sub-layers coming from evaporated and melted micro-regions as a result of locally high heat generated by discharging a series of capacitors charged and discharged in a controlled manner between electrode and substrate material. The maximum deposition rates at the beginning of the process and decreases until been in a steady state condition due to the nature of the resultant morphology of the created surface. 展开更多
关键词 ESD ESA electro-spark deposition IN738L Repairing NI6625 Surface Repairing of Gas TURBINE BLADES
下载PDF
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
7
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition DISPLAY LUMINESCENT ENCAPSULATION
下载PDF
Geochemistry and depositional environment of fuchsite quartzites from Sargur Group,western Dharwar Craton,India
8
作者 C.S.Sindhuja G.Harshitha +1 位作者 C.Manikyamba K.S.V.Subramanyam 《Acta Geochimica》 EI CAS CSCD 2024年第3期555-570,共16页
Meso-Neoarchean fuchsite quartzites are present in different stratigraphic positions of Dharwar Craton including the oldest(~3.3 Ga)Sargur Group of western Dharwar Craton.The present study deals with the petro-graphic... Meso-Neoarchean fuchsite quartzites are present in different stratigraphic positions of Dharwar Craton including the oldest(~3.3 Ga)Sargur Group of western Dharwar Craton.The present study deals with the petro-graphic and geochemical characteristics of the fuchsite quartzites from the Ghattihosahalli belt to evaluate their genesis,depositional setting and the enigma involved in the ancient sedimentation history.Their major mineral assemblages include quartz,fuchsite,and feldspars along with accessory kyanite and rutile.The geochemical com-positions are characterized by high SiO_(2),Al_(2)O_(3),low MgO,CaO,strongly enriched Cr(1326–6899 ppm),Ba(1165–3653 ppm),Sr(46–210 ppm),V(107–868 ppm)and Zn(11–158 ppm)contents compared to the upper continental crust(UCC).The UCC normalized rare earth element(REE)patterns are characterized by depleted light REE[(La/Sm)UCC=0.33–0.95]compared to heavy REE[(Gd/Yb)_(UCC)=0.42–1.65]with conspicuous positive Eu-anomalies(Eu/Eu^(*)=1.35–18.27)characteristic of hydrothermal solutions evidenced through the interlayered barites.The overall major and trace element systematics reflect a combined mafic-felsic provenance and suggest their deposition at a passive continental margin environ-ment.The comprehensivefield,petrographic,and geo-chemical studies indicate that these quartzites are infiltrated by Cr-richfluids released during high-grade metamorphism of associated ultramafic rocks.The Sargur and the subse-quent Dharwar orogeny amalgamated diverse lithounits from different tectonic settings,possibly leading to the release of Cr-richfluids and the formation of fuchsite quartzite during or after the orogeny.Thesefindings sug-gest a pre-existing stable crust prior to the Sargur Group and the link between orogenic events and various mineral deposits in the Dharwar Craton. 展开更多
关键词 Dharwar Craton Ghattihosahalli Fuchsite quartzite PROVENANCE depositional setting
下载PDF
Revolutionizing plasmonic platform via magnetic field-assisted confined ultrafast laser deposition of high-density,uniform,and ultrafine nanoparticle arrays
9
作者 Jin Xu Lingfeng Wang +5 位作者 Peilin Yang Haoqing Jiang Huai Zheng Licong An Xingtao Liu Gary J Cheng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期428-438,共11页
The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic sur... The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic surfaces has hindered their industrialization.To address this,we present a groundbreaking tunable plasmonic platform design achieved throughmagnetic field(MF)assisted ultrafast laser direct deposition in air.Through precise control of metal nanoparticles(NPs),with cobalt(Co)serving as the model material,employing an MF,and fine-tuning ultrafast laser parameters,we have effectively converted coarse and non-uniform NPs into densely packed,uniform,and ultrafine NPs(~3 nm).This revolutionary advancement results in the creation of customizable plasmonic‘hot spots,’which play a pivotal role insurface-enhanced Raman spectroscopy(SERS)sensors.The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energyenhancement.When the plasmonic nanostructures resonate with incident light,they generate intense local electromagnetic fields,thus vastly increasing the Raman scattering signal.This enhancement leads to an outstanding 2–18 fold boost in SERS performance and unparalleled sensing sensitivity down to 10^(-10)M.Notably,the plasmonic platform also demonstratesrobustness,retaining its sensing capability even after undergoing 50 cycles of rinsing andre-loading of chemicals.Moreover,this work adheres to green manufacturing standards,making it an efficient and environmentally friendly method for customizing plasmonic‘hot spots’inSERS devices.Our study not only achieves the formation of high-density,uniform,and ultrafine NP arrays on a tunable plasmonic platform but also showcases the profound relation betweenplasmonic resonance and energy enhancement.The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-relatedapplications,including photocatalysis,photovoltaics,and clean water,propelling us closer to a sustainable and cleaner future. 展开更多
关键词 magnetic field manipulation laser deposition metasurface SERS
下载PDF
Printability disparities in heterogeneous material combinations via laser directed energy deposition:a comparative study
10
作者 Jinsheng Ning Lida Zhu +9 位作者 Shuhao Wang Zhichao Yang Peihua Xu Pengsheng Xue Hao Lu Miao Yu Yunhang Zhao Jiachen Li Susmita Bose Amit Bandyopadhyay 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期389-405,共17页
Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality... Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts. 展开更多
关键词 directed energy deposition PRINTABILITY microstructure MICROHARDNESS bimetallic parts
下载PDF
Cracking on a nickel-based superalloy fabricated by direct energy deposition
11
作者 Xue Zhang Ya-hang Mu +4 位作者 Liang Ma Jing-jing Liang Yi-zhou Zhou Xiao-feng Sun Jin-guo Li 《China Foundry》 SCIE EI CAS CSCD 2024年第4期311-318,共8页
Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This s... Cracks have consistently been a significant challenge limiting the development of additive manufactured nickel-based superalloys.It is essential to investigate the location of cracks and their forming mechanism.This study extensively examines the impact of solidification process,microstructural evolution,and stress concentration on crack initiation during direct energy deposition(DED).The results emphasize that the crack formation is significantly related to large-angle grain boundaries,rapid cooling rates.Cracks caused by large-angle grain boundaries and a fast-cooling rate predominantly appear near the edge of the deposited samples.Liquation cracks are more likely to form near the top of the deposited sample,due to the presence ofγ/γ'eutectics.The secondary dendritic arm and the carbides in the interdendritic regions can obstruct liquid flow during the final stage of solidification,which results in the formation of solidification cracks and voids.This work paves the way to avoid cracks in nickel-based superalloys fabricated by DED,thereby enhancing the performance of superalloys. 展开更多
关键词 LOCATION cracks direct energy deposition nickel-based superalloys
下载PDF
Simulation of deuterium pellet ablation and deposition in the EAST tokamak with HPI2 code
12
作者 李大正 张洁 +2 位作者 侯吉磊 李懋 孙继忠 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期561-569,共9页
Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling ... Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak. 展开更多
关键词 pellet injection pellet ablation HPI2 pellet deposition
下载PDF
New insights into the deposition of natural gas hydrate on pipeline surfaces:A molecular dynamics simulation study
13
作者 Jun Zhang Hai-Qiang Fu +7 位作者 Mu-Zhi Guo Zhao Wang Li-Wen Li Qi Yin You-Guo Yan Wei Wei Wei-Feng Han Jie Zhong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期694-704,共11页
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N... Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces. 展开更多
关键词 deposition Natural gas hydrate Pipelines Water affinity Adhesion strength
下载PDF
Regulating Effect of Substrate Temperature on Sputteringgrown Ge/Si QDs under Low Ge Deposition
14
作者 舒启江 YANG Linjing +1 位作者 LIU Hongxing 黄鹏儒 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期888-894,共7页
The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectros... The effect of deposition temperature on the morphology and optoelectronic performance of Ge/Si QDs grown by magnetron sputtering under low Ge deposition(~4 nm)was investigated by atomic force microscopy,Raman spectroscopy,and photoluminescence(PL)tests.The experimental results indicate that temperatures higher than 750℃effectively increase the crystallization rate and surface smoothness of the Si buffer layer,and temperatures higher than 600℃significantly enhance the migration ability of Ge atoms,thus increasing the probability of Ge atoms meeting and nucleating to form QDs on Si buffer layer,but an excessively high temperature will cause the QDs to undergo an Ostwald ripening process and thus develop into super large islands.In addition,some PL peaks were observed in samples containing small-sized,high-density Ge QDs,the photoelectric properties reflected by these peaks were in good agreement with the corresponding structural characteristics of the grown QDs.Our results demonstrate the viability of preparing high-quality QDs by magnetron sputtering at high deposition rate,and the temperature effect is expected to work in conjunction with other controllable factors to further regulate QD growth,which paves an effective way for the industrial production of QDs that can be used in future devices. 展开更多
关键词 Ge/Si QDs deposition temperatures evolution law photoelectric performance
下载PDF
Distribution and geochemical significance of alkylbenzenes for crude oil with different depositional environments and thermal maturities
15
作者 Bing-Kun Meng Dao-Fu Song +1 位作者 Yuan Chen Sheng-Bao Shi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期777-790,共14页
A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dim... A total of 45 alkylbenzenes were detected and identified in crude oils with different depositional environments and thermal maturities from the Tarim Basin,Beibuwan Basin,and Songliao Basin using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GCTOFMS).By analyzing the distribution characteristics of C0-C5alkylbenzenes,it is found that the content of some alkylbenzenes varies greatly in crude oils.Based on the distribution characteristics of 1,2,4,5-tetramethylbenzene(Te MB)and 1,2,3,4-Te MB,the ratio of 1,2,4,5-Te MB to 1,2,3,4-Te MB is proposed to indicate the organic matter origin and depositional environment of ancient sediments.Oil samples originated mainly from lower hydrobiont,algae,bacteria and source rocks deposited under reducing/anoxic conditions have low 1,2,4,5-/1,2,3,4-Te MB values(less than 0.6),while oil samples originated mainly from terrestrial higher plants and source rocks deposited under oxic/sub-oxic conditions have higher 1,2,4,5-/1,2,3,4-Te MB values(greater than 1.0).The significant difference of 1,2,4,5-/1,2,3,4-Te MB values is controlled by 1,2,4,5-Te MB content.1,2,4,5-Te MB content in oils derived from source rocks deposited in oxidized sedimentary environment(greater than 1.0 mg/g whole oil)is higher than that in oils from source rocks deposited in reduced sedimentary environment(less than 1.0 mg/g whole oil).1,2,4,5-/1,2,3,4-Te MB ratio might not or slightly be affected by evaporative fractionation,biodegradation and thermal maturity.1,2,4,5-/1,2,3,4-Te MB ratio and 1,2,4,5-Te MB content can be used as supplementary parameter for the identification of sedimentary environment and organic matter input.It should be noted that compared to the identification of organic matter sources,the 1,2,4,5-/1,2,3,4-Te MB parameter is more effective in identifying sedimentary environments. 展开更多
关键词 1 2 4 5-Tetramethylbenzene GC×GC-TOFMS Organic matter origin depositional environment
下载PDF
Effect of phosphorus content on interfacial heat transfer and film deposition behavior during the high-temperature simulation of strip casting
16
作者 Wanlin Wang Cheng Lu +5 位作者 Liang Hao Jie Zeng Lejun Zhou Xinyuan Liu Xia Li Chenyang Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1016-1025,共10页
The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification ... The interfacial wettability and heat transfer behavior are crucial in the strip casting of high phosphorus-containing steel.A hightemperature simulation of strip casting was conducted using the droplet solidification technique with the aims to reveal the effects of phosphorus content on interfacial wettability,deposited film,and interfacial heat transfer behavior.Results showed that when the phosphorus content increased from 0.014wt%to 0.406wt%,the mushy zone enlarged,the complete solidification temperature delayed from1518.3 to 1459.4℃,the final contact angle decreased from 118.4°to 102.8°,indicating improved interfacial contact,and the maximum heat flux increased from 6.9 to 9.2 MW/m2.Increasing the phosphorus content from 0.081wt%to 0.406wt%also accelerated the film deposition rate from 1.57 to 1.73μm per test,resulting in a thickened naturally deposited film with increased thermal resistance that advanced the transition point of heat transfer from the fifth experiment to the third experiment. 展开更多
关键词 strip casting interfacial heat transfer interfacial wettability naturally deposited film phosphorus content
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
17
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Aerosol deposition technology and its applications in batteries
18
作者 Xinyu Wang Ramon Alberto Paredes Camacho +6 位作者 Xiaoyu Xu Yumei Wang Yi Qiang Hans Kungl Ruediger-AEichel Yunfeng Zhang Li Lu 《Nano Materials Science》 EI CAS CSCD 2024年第1期24-37,共14页
Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto tempe... Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto temperaturesensitive substrates,including metals,glasses,and polymers.It should be emphasized that the AD is a spray coating technology that uses powder without thermal assistance to generate films with high density.Compared to the traditional sputter-based approach,the AD shows several advantages in efficiency,convenience,better interfacial bonding and so on.Therefore,it opens some possibilities to the field of batteries,especially all-solidstate batteries(ASSBs)and draws much attention not only for research but also for large scale applications.The purpose of this work is to provide a critical review on the science and technology of AD as well as its applications in the field of batteries.The process,mechanism and effective parameters of AD,and recent developments in AD applications in the field of batteries will be systematically reviewed so that a trend for AD will be finally provided. 展开更多
关键词 Aerosol deposition Room temperature impact consolidation Ceramic film All-solid-state battery Spray coating technology
下载PDF
A progress review of black carbon deposition on Arctic snow and ice and its impact on climate change
19
作者 ZHANG Zilu ZHOU Libo ZHANG Meigen 《Advances in Polar Science》 CSCD 2024年第2期178-191,共14页
The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant... The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice. 展开更多
关键词 Arctic climate black carbon ALBEDO SNOW deposition
下载PDF
Preparation of palladium-based catalyst by plasma-assisted atomic layer deposition and its applications in CO_(2) hydrogenation reduction
20
作者 唐守贤 田地 +4 位作者 李筝 王正铎 刘博文 程久珊 刘忠伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期31-39,共9页
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report... Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively. 展开更多
关键词 atomic layer deposition CO_(2)hydrogenation palladium based catalyst
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部