A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf...A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.展开更多
An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID al...An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.展开更多
This article, in order to precisely impose friction on aircraft and weapon actuation systems, presents a new friction loading method characteristic of "torque-zero velocity" switching control with an electro-hydraul...This article, in order to precisely impose friction on aircraft and weapon actuation systems, presents a new friction loading method characteristic of "torque-zero velocity" switching control with an electro-hydraulic load simulator. As the general Stribeck friction model has little related to static friction, it proposes a "torque-zero velocity" switcher, in which a zero-velocity controller is developed to load the static friction and a torque controller the kinetic friction. With the help of mathematical modeling, this article designs a "torque-zero velocity" switching controller and, correspondingly, provides a "dual-threshold judgment" algorithm. Simulation results indicate that the proposed method can be successfully used to carry out the static and kinetic friction simulation with an electro-hydraulic load simulator.展开更多
文摘A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.
文摘An eight-channel force loading system is presented, which adopts position control system and force control system switching model, small flow servo valve controlled capacious cylinder system scheme, intelligent PID algorithm and distributed load approach. Through the analyses of the equivalent model of valve controlled cylinder force subsystem, a controller based on intelligent PID algorithm is designed, which is not sensitive to the variation of parameters such as environmental stiffness. According to the coupling of multiple load channels, a distributed load approach is employed in the superior monitor computer. Experimental results show that the system designed has high precision and robustness.
基金National Natural Science Foundation of China (50825502)
文摘This article, in order to precisely impose friction on aircraft and weapon actuation systems, presents a new friction loading method characteristic of "torque-zero velocity" switching control with an electro-hydraulic load simulator. As the general Stribeck friction model has little related to static friction, it proposes a "torque-zero velocity" switcher, in which a zero-velocity controller is developed to load the static friction and a torque controller the kinetic friction. With the help of mathematical modeling, this article designs a "torque-zero velocity" switching controller and, correspondingly, provides a "dual-threshold judgment" algorithm. Simulation results indicate that the proposed method can be successfully used to carry out the static and kinetic friction simulation with an electro-hydraulic load simulator.