Switch electro-hydraulic proportional amplifier(PA) widely employs single switch modulation power driving(SSMPD) or reverse discharging power driving(RDPD) at present. SSMPD has slow dynamic response, and can't...Switch electro-hydraulic proportional amplifier(PA) widely employs single switch modulation power driving(SSMPD) or reverse discharging power driving(RDPD) at present. SSMPD has slow dynamic response, and can't adjust independently the dither signal's amplitude and frequency; RDPD accelerates the current decay; consequently, it increases current ripple and power loss. For the purpose of solving the above mentioned problem, the tri-state modulation power driving(TSMPD) scheme was proposed for improving the performance of power driving. Detailedly, the hardware circuit for the tri-state modulation power driving is designed; the tri-state modulation algorithm is realized by digital signal processor(DSP). The tri-state modulation power driving is investigated by experiments, comparetive experiments among the single switch modulation power driving(SSMPD), reverse discharging power driving(RDPD), and the TSMPD are implemented, and the experimental results demonstrate that the linearity error of TSMDP meets the requirement of PA; the current response of TSMSP is the best; the amplitude of ripple current of the TSMPD can be reduced without increasing frequency of PWM, in addition, dither signal amplitude and frequency can be adjusted independently for each other. It is very meaningful to guide the development of high performance proportional amplifier for high frequency response proportional solenoid.展开更多
Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters accordin...Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters according to the complicated road environment of heavy vehicles to fulfill the requirements of the vehicle ride comfort. In this paper, a semi-active hydro-pneumatic suspension system based on the electro-hydraulic proportional valve control is proposed, and fuzzy control is used as the control strategy to adjust the?damping force of the semi-active hydro-pneumatic suspension. A 1/4?semi-active hydro-pneumatic suspension model is established, which is co-simulated with AMESim and MATLAB/Simulink. The co-simulation results show that the semi-active hydro-pneumatic suspension system can significantly reduce vibration of the vehicle body, and improve the suspension performance comparing with passive hydro-pneumatic suspension.展开更多
This paper presents an adaptive friction compensation method based on LuGre model for large diameter electric-hydraulic proportional valves in which the valve core contains friction.A mathematic model of the electric-...This paper presents an adaptive friction compensation method based on LuGre model for large diameter electric-hydraulic proportional valves in which the valve core contains friction.A mathematic model of the electric-hydraulic proportional valve is established,and the friction characteristics are described based on the LuGre model.The global asymptotic stability of the control system with the adaptive friction compensation controller is guaranteed over Lyapunov theorem.The adaptive compensation of the friction on LuGre friction model is verified by simulation and experiment.The steady-state error is about [-4.23 × 10^(-5)m,5.91 × 10^(-5)m]and[-2.5 × 10^(-4)m,2.6 ×10^(-4) m] on simulation and experiment,the position tracking accuracy is higher,and the lag time of the main valve through the dead zone is shorter.The result proves that the adaptive friction compensation method can effectively compensate for the negative effects of nonlinear friction.展开更多
The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to t...The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to the structure principles under the two different working conditions, the transfer functions under such conditions are derived. With the transfer functions, some structure elements that may affect its performance, are investigated, afterwards some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The conclusions can be used to instruct engineering applications and products designing. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works.展开更多
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th...The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.展开更多
The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodo...The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodology, developed combining CFD (computational fluid dynamics) simulations with lumped and distributed numerical modeling, is firstly introduced and tailored by comparing the numerical results with measurements coming from an experimental campaign performed for a wide range of pressure loads and metered flow rates. Then, both the reliability and the limits of the numerical approach are highlighted through a detailed numerical vs. experimental comparison, involving the pressure of the main hydraulic lines, the flow rate through the first section and the local compensator displacement. Finally, the CAE methodology has been applied for assessing the internal ducts hydraulic permeability and the local compensator spring pre-load influence on the control valve metering curves. At the end of this analysis, an optimized design configuration, featuring a maximum controlled volumetric flow rate increased of more than 25%, has been proposed.展开更多
Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely co...Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.展开更多
Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to pre...Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.展开更多
Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioni...Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.展开更多
Bai et al investigate the predictive value of T lymphocyte proportion in Alzheimer's disease(AD)prognosis.Through a retrospective study involving 62 AD patients,they found that a decrease in T lymphocyte proportio...Bai et al investigate the predictive value of T lymphocyte proportion in Alzheimer's disease(AD)prognosis.Through a retrospective study involving 62 AD patients,they found that a decrease in T lymphocyte proportion correlated with a poorer prognosis,as indicated by higher modified Rankin scale scores.While the study highlights the potential of T lymphocyte proportion as a prognostic marker,it suggests the need for larger,multicenter studies to enhance generalizability and validity.Additionally,future research could use cognitive exams when evaluating prognosis and delve into immune mechanisms underlying AD progression.Despite limitations inherent in retrospective designs,Bai et al's work contributes to understanding the immune system's role in AD prognosis,paving the way for further exploration in this under-researched area.展开更多
This paper studies the deterioration of bridge substructures utilizing the Long-Term Bridge Performance(LTBP)Program InfoBridge^(TM)and develops a survival model using Cox proportional hazards regression.The survival ...This paper studies the deterioration of bridge substructures utilizing the Long-Term Bridge Performance(LTBP)Program InfoBridge^(TM)and develops a survival model using Cox proportional hazards regression.The survival analysis is based on the National Bridge Inventory(NBI)dataset.The study calculates the survival rate of reinforced and prestressed concrete piles on bridges under marine conditions over a 29-year span(from 1992 to 2020).The state of Maryland is the primary focus of this study,with data from three neighboring regions,the District of Columbia,Virginia,and Delaware to expand the sample size.The data obtained from the National Bridge Inventory are condensed and filtered to acquire the most relevant information for model development.The Cox proportional hazards regression is applied to the condensed NBI data with six parameters:Age,ADT,ADTT,number of spans,span length,and structural length.Two survival models are generated for the bridge substructures:Reinforced and prestressed concrete piles in Maryland and reinforced and prestressed concrete piles in wet service conditions in the District of Columbia,Maryland,Delaware,and Virginia.Results from the Cox proportional hazards regression are used to construct Markov chains to demonstrate the sequence of the deterioration of bridge substructures.The Markov chains can be used as a tool to assist in the prediction and decision-making for repair,rehabilitation,and replacement of bridge piles.Based on the numerical model,the Pile Assessment Matrix Program(PAM)is developed to facilitate the assessment and maintenance of current bridge structures.The program integrates the NBI database with the inspection and research reports from various states’department of transportation,to serve as a tool for condition state simulation based on maintenance or rehabilitation strategies.展开更多
A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control...A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.展开更多
A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer fimction of the valve...A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer fimction of the valve is derived. With the transfer function, some structure elements that may affect its performance are investigated. Through the numerical simulation and test study, some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works. The paper provides theoretical basis for engineering applications and series expanding design works展开更多
In order to evaluate the reliability of long-lifetime products with degradation data, a new proportional hazard degradation model is proposed. By the similarity between time-degradation data and stress-accelerated lif...In order to evaluate the reliability of long-lifetime products with degradation data, a new proportional hazard degradation model is proposed. By the similarity between time-degradation data and stress-accelerated lifetime, and the failure rate function of degradation data which is assumed to be proportional to the time covariate, the reliability assessment based on a proportional hazard degradation model is realized. The least squares method is used to estimate the model's parameters. Based on the failure rate of the degradation data and the proportion function of the known time, the failure rate and the reliability function under the given time and the predetermined failure threshold can be extrapolated. A long life GaAs laser is selected as a case study and its reliability is evaluated. The results show that the proposed method can accurately describe the degradation process and it is effective for the reliability assessment of long lifetime products.展开更多
The purpose of this paper is to design control loop and guidance loop for the homing missile, to prove that the modified variable structure proportional navigation (VSPN) can be used in passive homing guidance system,...The purpose of this paper is to design control loop and guidance loop for the homing missile, to prove that the modified variable structure proportional navigation (VSPN) can be used in passive homing guidance system, and to compare the VSPN with the proportional navigation (PN). Angular rate and linear acceleration are fed back to improve the stability and robust of autopilot, VSPN and PN are compared in mathematics simulation of homing missile in attacking tanks and helicopters. The damp and the stability of the missile body are increased. The VSPN cuts down the overload of guidance phase dramatically, makes the ballistic trajectory straighter than PN and leads to smaller missdistance. The VSPN can be used for passive homing guidance system, and is especially suitable for attacking helicopter.展开更多
Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the v...Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.展开更多
A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust...A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.展开更多
Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the ti...Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the time? varying deadzone and gain. Methods The large positioning errors caused by the time varying deadzone were significantly reduced by using the dynamic compensation method for the deadzone; and the large overshoot caused by the time varying gain were dramatically reduced by using the three section intelligent control schemes. Results Experimental results demonstrated that the positioning performance of rapid response, high accuracy and smaller or even no overshoot was achieved under a wide variations of load torque. Conclusion The good positioning performance for valve controlled motor servo systems has been achieved in the presence of the time varying deadzone and gain.展开更多
Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the ...Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the hydraulic actuator continuously. Considering the different application and the cost, the existing technique mainly includes the internal feedback valve used in open loop system, and the electronic closed loop controlled valve used in closed loop system. Because of their different mechanical structure and the gre at different in performance, it brings inconvenience for customer to select, also inconvenience for enterprise to produce. Aiming at this problem, the idea of combining the above two kinds of valves into one body is proposed first, and then the new valve's structure to realize this target is designed. The idea intends to apply the displacement pilot flow feedback control principle in present 2-position 2-way valve system to the proportional direction valve of 3-position 4-way system. Newly designed feed forward controller can decouple the interference between the internal feedback and the electronic closed loop. Redundant conversion is designed to electronic switch mode. Experiment on dynamic and static characteristic of new proportional direction valve in internal feedback control mode and electronic closed loop control mode is discussed to prove the new theory is correct. Although the new valve is of excellent dynamic response characteristic, its steady control characteristic in open loop control mode needs to be improved further. The research results prepare one new fundamental element for electronic-hydraulic control technology.展开更多
基金supported by National Basic Research and Development Program of China (973 Program, Grant No. 2007CB714000)National Natural Science Foundation of China (Grant No. 50875233)
文摘Switch electro-hydraulic proportional amplifier(PA) widely employs single switch modulation power driving(SSMPD) or reverse discharging power driving(RDPD) at present. SSMPD has slow dynamic response, and can't adjust independently the dither signal's amplitude and frequency; RDPD accelerates the current decay; consequently, it increases current ripple and power loss. For the purpose of solving the above mentioned problem, the tri-state modulation power driving(TSMPD) scheme was proposed for improving the performance of power driving. Detailedly, the hardware circuit for the tri-state modulation power driving is designed; the tri-state modulation algorithm is realized by digital signal processor(DSP). The tri-state modulation power driving is investigated by experiments, comparetive experiments among the single switch modulation power driving(SSMPD), reverse discharging power driving(RDPD), and the TSMPD are implemented, and the experimental results demonstrate that the linearity error of TSMDP meets the requirement of PA; the current response of TSMSP is the best; the amplitude of ripple current of the TSMPD can be reduced without increasing frequency of PWM, in addition, dither signal amplitude and frequency can be adjusted independently for each other. It is very meaningful to guide the development of high performance proportional amplifier for high frequency response proportional solenoid.
文摘Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters according to the complicated road environment of heavy vehicles to fulfill the requirements of the vehicle ride comfort. In this paper, a semi-active hydro-pneumatic suspension system based on the electro-hydraulic proportional valve control is proposed, and fuzzy control is used as the control strategy to adjust the?damping force of the semi-active hydro-pneumatic suspension. A 1/4?semi-active hydro-pneumatic suspension model is established, which is co-simulated with AMESim and MATLAB/Simulink. The co-simulation results show that the semi-active hydro-pneumatic suspension system can significantly reduce vibration of the vehicle body, and improve the suspension performance comparing with passive hydro-pneumatic suspension.
基金Supported by the National Key Basic Research Program of China(No.2014CB046405)Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan of China(No.2014BAF02B00,2011BAF09B04)
文摘This paper presents an adaptive friction compensation method based on LuGre model for large diameter electric-hydraulic proportional valves in which the valve core contains friction.A mathematic model of the electric-hydraulic proportional valve is established,and the friction characteristics are described based on the LuGre model.The global asymptotic stability of the control system with the adaptive friction compensation controller is guaranteed over Lyapunov theorem.The adaptive compensation of the friction on LuGre friction model is verified by simulation and experiment.The steady-state error is about [-4.23 × 10^(-5)m,5.91 × 10^(-5)m]and[-2.5 × 10^(-4)m,2.6 ×10^(-4) m] on simulation and experiment,the position tracking accuracy is higher,and the lag time of the main valve through the dead zone is shorter.The result proves that the adaptive friction compensation method can effectively compensate for the negative effects of nonlinear friction.
文摘The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to the structure principles under the two different working conditions, the transfer functions under such conditions are derived. With the transfer functions, some structure elements that may affect its performance, are investigated, afterwards some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The conclusions can be used to instruct engineering applications and products designing. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works.
文摘The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out.
文摘The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodology, developed combining CFD (computational fluid dynamics) simulations with lumped and distributed numerical modeling, is firstly introduced and tailored by comparing the numerical results with measurements coming from an experimental campaign performed for a wide range of pressure loads and metered flow rates. Then, both the reliability and the limits of the numerical approach are highlighted through a detailed numerical vs. experimental comparison, involving the pressure of the main hydraulic lines, the flow rate through the first section and the local compensator displacement. Finally, the CAE methodology has been applied for assessing the internal ducts hydraulic permeability and the local compensator spring pre-load influence on the control valve metering curves. At the end of this analysis, an optimized design configuration, featuring a maximum controlled volumetric flow rate increased of more than 25%, has been proposed.
基金supported by Research Foundation funded by Thu Dau Mot University。
文摘Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.
文摘Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.
基金funded by the National Natural Science Foundation of China(52077004)Anhui Electric Power Company of the State Grid(52120021N00L).
文摘Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.
文摘Bai et al investigate the predictive value of T lymphocyte proportion in Alzheimer's disease(AD)prognosis.Through a retrospective study involving 62 AD patients,they found that a decrease in T lymphocyte proportion correlated with a poorer prognosis,as indicated by higher modified Rankin scale scores.While the study highlights the potential of T lymphocyte proportion as a prognostic marker,it suggests the need for larger,multicenter studies to enhance generalizability and validity.Additionally,future research could use cognitive exams when evaluating prognosis and delve into immune mechanisms underlying AD progression.Despite limitations inherent in retrospective designs,Bai et al's work contributes to understanding the immune system's role in AD prognosis,paving the way for further exploration in this under-researched area.
基金This research receives funding from the Maryland Department of Transportation State Highway Administration.
文摘This paper studies the deterioration of bridge substructures utilizing the Long-Term Bridge Performance(LTBP)Program InfoBridge^(TM)and develops a survival model using Cox proportional hazards regression.The survival analysis is based on the National Bridge Inventory(NBI)dataset.The study calculates the survival rate of reinforced and prestressed concrete piles on bridges under marine conditions over a 29-year span(from 1992 to 2020).The state of Maryland is the primary focus of this study,with data from three neighboring regions,the District of Columbia,Virginia,and Delaware to expand the sample size.The data obtained from the National Bridge Inventory are condensed and filtered to acquire the most relevant information for model development.The Cox proportional hazards regression is applied to the condensed NBI data with six parameters:Age,ADT,ADTT,number of spans,span length,and structural length.Two survival models are generated for the bridge substructures:Reinforced and prestressed concrete piles in Maryland and reinforced and prestressed concrete piles in wet service conditions in the District of Columbia,Maryland,Delaware,and Virginia.Results from the Cox proportional hazards regression are used to construct Markov chains to demonstrate the sequence of the deterioration of bridge substructures.The Markov chains can be used as a tool to assist in the prediction and decision-making for repair,rehabilitation,and replacement of bridge piles.Based on the numerical model,the Pile Assessment Matrix Program(PAM)is developed to facilitate the assessment and maintenance of current bridge structures.The program integrates the NBI database with the inspection and research reports from various states’department of transportation,to serve as a tool for condition state simulation based on maintenance or rehabilitation strategies.
基金This project is supported by National Natural Science Foundation of China (No.50275102)Provincial Foundation for Abroad Return People of Shanxi (No.101045).
文摘A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.
基金supported by Program for New Century Excellent Talents in University of China (No.NCET-05-0528).
文摘A kind of cartridge servo proportional valve is discussed, which can be used for controlling large flow rate with high performance. By analyzing the structure principle of the valve, the transfer fimction of the valve is derived. With the transfer function, some structure elements that may affect its performance are investigated. Through the numerical simulation and test study, some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works. The paper provides theoretical basis for engineering applications and series expanding design works
基金The National Natural Science Foundation of China (No.50405021)
文摘In order to evaluate the reliability of long-lifetime products with degradation data, a new proportional hazard degradation model is proposed. By the similarity between time-degradation data and stress-accelerated lifetime, and the failure rate function of degradation data which is assumed to be proportional to the time covariate, the reliability assessment based on a proportional hazard degradation model is realized. The least squares method is used to estimate the model's parameters. Based on the failure rate of the degradation data and the proportion function of the known time, the failure rate and the reliability function under the given time and the predetermined failure threshold can be extrapolated. A long life GaAs laser is selected as a case study and its reliability is evaluated. The results show that the proposed method can accurately describe the degradation process and it is effective for the reliability assessment of long lifetime products.
文摘The purpose of this paper is to design control loop and guidance loop for the homing missile, to prove that the modified variable structure proportional navigation (VSPN) can be used in passive homing guidance system, and to compare the VSPN with the proportional navigation (PN). Angular rate and linear acceleration are fed back to improve the stability and robust of autopilot, VSPN and PN are compared in mathematics simulation of homing missile in attacking tanks and helicopters. The damp and the stability of the missile body are increased. The VSPN cuts down the overload of guidance phase dramatically, makes the ballistic trajectory straighter than PN and leads to smaller missdistance. The VSPN can be used for passive homing guidance system, and is especially suitable for attacking helicopter.
文摘Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.
基金This project is supported by Provincial Natural Science Foundation of Zhejiang(No.502088).
文摘A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.
文摘Aim In accordance with the positioning control for valve controlled motor electrohydraulic proportional servo systems driving the static load torque, the positioning performance was studied in the presence of the time? varying deadzone and gain. Methods The large positioning errors caused by the time varying deadzone were significantly reduced by using the dynamic compensation method for the deadzone; and the large overshoot caused by the time varying gain were dramatically reduced by using the three section intelligent control schemes. Results Experimental results demonstrated that the positioning performance of rapid response, high accuracy and smaller or even no overshoot was achieved under a wide variations of load torque. Conclusion The good positioning performance for valve controlled motor servo systems has been achieved in the presence of the time varying deadzone and gain.
基金supported by National Natural Science Foundation of China (Grant No. 50575156)Shanxi Provincial Natural Science Foundation of China (Grant No. 2008011053)
文摘Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the hydraulic actuator continuously. Considering the different application and the cost, the existing technique mainly includes the internal feedback valve used in open loop system, and the electronic closed loop controlled valve used in closed loop system. Because of their different mechanical structure and the gre at different in performance, it brings inconvenience for customer to select, also inconvenience for enterprise to produce. Aiming at this problem, the idea of combining the above two kinds of valves into one body is proposed first, and then the new valve's structure to realize this target is designed. The idea intends to apply the displacement pilot flow feedback control principle in present 2-position 2-way valve system to the proportional direction valve of 3-position 4-way system. Newly designed feed forward controller can decouple the interference between the internal feedback and the electronic closed loop. Redundant conversion is designed to electronic switch mode. Experiment on dynamic and static characteristic of new proportional direction valve in internal feedback control mode and electronic closed loop control mode is discussed to prove the new theory is correct. Although the new valve is of excellent dynamic response characteristic, its steady control characteristic in open loop control mode needs to be improved further. The research results prepare one new fundamental element for electronic-hydraulic control technology.