期刊文献+
共找到16,684篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems
1
作者 Mustufa Haider Abidi Hisham Alkhalefah Mohamed K.Aboudaif 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期977-997,共21页
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca... The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%. 展开更多
关键词 Smart healthcare systems multilayer perceptron CYBERSECURITY adversarial attack detection Healthcare 4.0
下载PDF
Generalized autoencoder-based fault detection method for traction systems with performance degradation
2
作者 Chao Cheng Wenyu Liu +1 位作者 Lu Di Shenquan Wang 《High-Speed Railway》 2024年第3期180-186,共7页
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ... Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods. 展开更多
关键词 Performance degradation Generalized autoencoder Fault detection Traction control systems High-speed trains
下载PDF
Optimization of Stealthwatch Network Security System for the Detection and Mitigation of Distributed Denial of Service (DDoS) Attack: Application to Smart Grid System
3
作者 Emmanuel S. Kolawole Penrose S. Cofie +4 位作者 John H. Fuller Cajetan M. Akujuobi Emmanuel A. Dada Justin F. Foreman Pamela H. Obiomon 《Communications and Network》 2024年第3期108-134,共27页
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati... The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene. 展开更多
关键词 Smart Grid system Distributed Denial of Service (DDoS) Attack Intrusion detection and Prevention systems detectION Mitigation and Stealthwatch
下载PDF
The concept of sUAS/DL-based system for detecting and classifying abandoned small firearms
4
作者 Jungmok Ma Oleg A.Yakimenko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期23-31,共9页
Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployabl... Military object detection and identification is a key capability in surveillance and reconnaissance.It is a major factor in warfare effectiveness and warfighter survivability.Inexpensive,portable,and rapidly deployable small unmanned aerial systems(s UAS)in conjunction with powerful deep learning(DL)based object detection models are expected to play an important role for this application.To prove overall feasibility of this approach,this paper discusses some aspects of designing and testing of an automated detection system to locate and identify small firearms left at the training range or at the battlefield.Such a system is envisioned to involve an s UAS equipped with a modern electro-optical(EO)sensor and relying on a trained convolutional neural network(CNN).Previous study by the authors devoted to finding projectiles on the ground revealed certain challenges such as small object size,changes in aspect ratio and image scale,motion blur,occlusion,and camouflage.This study attempts to deal with these challenges in a realistic operational scenario and go further by not only detecting different types of firearms but also classifying them into different categories.This study used a YOLOv2CNN(Res Net-50 backbone network)to train the model with ground truth data and demonstrated a high mean average precision(m AP)of 0.97 to detect and identify not only small pistols but also partially occluded rifles. 展开更多
关键词 Small firearms Object detection Deep learning Small unmanned aerial systems
下载PDF
The Possibility of Detecting our Solar System through Astrometry
5
作者 Dong-Hong Wu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第11期198-204,共7页
Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques,astrometry stands out for its capability to accurately determ... Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques,astrometry stands out for its capability to accurately determine the orbital parameters of exoplanets.In this study,we examine the likelihood of extraterrestrial intelligent civilizations detecting planets in our solar system using the astrometry method.By conducting injection-recovery simulations,we investigate the detectability of the four giant planets in our solar system under different observing baselines and observational errors.Our findings indicate that extraterrestrial intelligence could detect and characterize all four giant planets,provided they are observed for a minimum of 90 yr with signal-noise ratios exceeding 1.For individual planets such as Jupiter,Saturn,and Neptune,a baseline that surpasses half of their orbital periods is necessary for detection.However,Uranus requires longer observing baselines since its orbital period is roughly half of that of Neptune.If the astrometry precision is equal to or better than 10μas,all 8707 stars located within30 pc of our solar system possess the potential to detect the four giant planets within 100 yr.Additionally,our prediction suggests that over 300 stars positioned within 10 pc from our solar system could detect our Earth if they achieve an astrometry precision of 0.3μas. 展开更多
关键词 ASTROMETRY planets and satellites:detection Planetary systems
下载PDF
End-to-End Joint Multi-Object Detection and Tracking for Intelligent Transportation Systems
6
作者 Qing Xu Xuewu Lin +6 位作者 Mengchi Cai Yu‑ang Guo Chuang Zhang Kai Li Keqiang Li Jianqiang Wang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期280-290,共11页
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How... Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers. 展开更多
关键词 Intelligent transportation systems Joint detection and tracking Global correlation network End-to-end tracking
下载PDF
Aquila Optimization with Machine Learning-Based Anomaly Detection Technique in Cyber-Physical Systems
7
作者 A.Ramachandran K.Gayathri +1 位作者 Ahmed Alkhayyat Rami Q.Malik 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2177-2194,共18页
Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universa... Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universal interconnection mechanisms between the physical and digital worlds.Since the complexity level of the CPS increases,an adversary attack becomes possible in several ways.Assuring security is a vital aspect of the CPS environment.Due to the massive surge in the data size,the design of anomaly detection techniques becomes a challenging issue,and domain-specific knowledge can be applied to resolve it.This article develops an Aquila Optimizer with Parameter Tuned Machine Learning Based Anomaly Detection(AOPTML-AD)technique in the CPS environment.The presented AOPTML-AD model intends to recognize and detect abnormal behaviour in the CPS environment.The presented AOPTML-AD framework initially pre-processes the network data by converting them into a compatible format.Besides,the improved Aquila optimization algorithm-based feature selection(IAOA-FS)algorithm is designed to choose an optimal feature subset.Along with that,the chimp optimization algorithm(ChOA)with an adaptive neuro-fuzzy inference system(ANFIS)model can be employed to recognise anomalies in the CPS environment.The ChOA is applied for optimal adjusting of the membership function(MF)indulged in the ANFIS method.The performance validation of the AOPTML-AD algorithm is carried out using the benchmark dataset.The extensive comparative study reported the better performance of the AOPTML-AD technique compared to recent models,with an accuracy of 99.37%. 展开更多
关键词 Machine learning industry 4.0 cyber-physical systems anomaly detection aquila optimizer
下载PDF
Detecting change in process systems with immunocomputing
8
作者 杨小平 C Aldrich 《Journal of Coal Science & Engineering(China)》 2005年第1期56-58,共3页
Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process sys... Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed. 展开更多
关键词 change detection immunocomputing process systems
下载PDF
Small tracking error correction for moving targets of intelligent electro-optical detection systems
9
作者 Cheng SHEN Zhijie WEN +2 位作者 Wenliang ZHU Dapeng FAN Mingyuan LING 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第2期29-44,共16页
Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,po... Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology.Aerial threats,such as“low,slow,and small(LSS)”moving targets,pose increasing challenges to society.The core goal of this work is to address the issues,such as small tracking error correction and aiming control,of electro-optical detection systems by using mechatronics drive modeling,composite velocity–image stability control,and improved interpolation filter design.A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis,two-gimbal cantilever beam coaxial configuration.Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop.An improved segmental interpolation filtering algorithm is established by combining line of sight(LOS)position correction and multivariable typical tracking fault diagnosis.Then,a platform with 2 degrees of freedom is used to test the system.An LSS moving target shooting object with a tracking distance of S=100 m,target board area of A=1 m^(2),and target linear velocity of v=5 m/s is simulated.Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%,and that of the traditional method is 41.6%.Compared with the LOS shooting accuracy of the traditional method,the LOS shooting accuracy of the optimized method is improved by 37.6%. 展开更多
关键词 electro-optical detection system small tracking error moving target visual servo aiming contro
原文传递
A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks 被引量:1
10
作者 G.Nagalalli GRavi 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期475-490,共16页
Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like d... Wireless Sensor Network(WSN),whichfinds as one of the major components of modern electronic and wireless systems.A WSN consists of numerous sensor nodes for the discovery of sensor networks to leverage features like data sensing,data processing,and communication.In thefield of medical health care,these network plays a very vital role in transmitting highly sensitive data from different geographic regions and collecting this information by the respective network.But the fear of different attacks on health care data typically increases day by day.In a very short period,these attacks may cause adversarial effects to the WSN nodes.Furthermore,the existing Intrusion Detection System(IDS)suffers from the drawbacks of limited resources,low detection rate,and high computational overhead and also increases the false alarm rates in detecting the different attacks.Given the above-mentioned problems,this paper proposes the novel MegaBAT optimized Long Short Term Memory(MBOLT)-IDS for WSNs for the effective detection of different attacks.In the proposed framework,hyperpara-meters of deep Long Short-Term Memory(LSTM)were optimized by the meta-heuristic megabat algorithm to obtain a low computational overhead and high performance.The experimentations have been carried out using(Wireless Sensor NetworkDetection System)WSN-DS datasets and performance metrics such as accuracy,recall,precision,specificity,and F1-score are calculated and compared with the other existing intelligent IDS.The proposed framework provides outstanding results in detecting the black hole,gray hole,scheduling,flooding attacks and significantly reduces the time complexity,which makes this system suitable for resource-constraint WSNs. 展开更多
关键词 Wireless sensor network intrusion detection systems long short term memory megabat optimization
下载PDF
Aerial multi-spectral AI-based detection system for unexploded ordnance 被引量:1
11
作者 Seungwan Cho Jungmok Ma Oleg A.Yakimenko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期24-37,共14页
Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent... Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery. 展开更多
关键词 Unexploded ordnance(UXO) Multispectral imaging Small unmanned aerial systems(sUAS) Object detection Deep learning convolutional neural network(DLCNN)
下载PDF
Video Based Vehicle Detection and its Application in Intelligent Transportation Systems 被引量:8
12
作者 Naveen Chintalacheruvu Venkatesan Muthukumar 《Journal of Transportation Technologies》 2012年第4期305-314,共10页
Video based vehicle detection technology is an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and comprehensive vehicle behavior data collection capabilities. This paper propose... Video based vehicle detection technology is an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and comprehensive vehicle behavior data collection capabilities. This paper proposes an efficient video based vehicle detection system based on Harris-Stephen corner detector algorithm. The algorithm was used to develop a stand alone vehicle detection and tracking system that determines vehicle counts and speeds at arterial roadways and freeways. The proposed video based vehicle detection system was developed to eliminate the need of complex calibration, robustness to contrasts variations, and better performance with low resolutions videos. The algorithm performance for accuracy in vehicle counts and speed was evaluated. The performance of the proposed system is equivalent or better compared to a commercial vehicle detection system. Using the developed vehicle detection and tracking system an advance warning intelligent transportation system was designed and implemented to alert commuters in advance of speed reductions and congestions at work zones and special events. The effectiveness of the advance warning system was evaluated and the impact discussed. 展开更多
关键词 VEHICLE detection VIDEO and IMAGE PROCESSING ADVANCE WARNING systems
下载PDF
A Review of Anomaly Detection Systems in Cloud Networks and Survey of Cloud Security Measures in Cloud Storage Applications 被引量:8
13
作者 Arif Sari 《Journal of Information Security》 2015年第2期142-154,共13页
Cloud computing has become one of the most projecting words in the IT world due to its design for providing computing service as a utility. The typical use of cloud computing as a resource has changed the scenery of c... Cloud computing has become one of the most projecting words in the IT world due to its design for providing computing service as a utility. The typical use of cloud computing as a resource has changed the scenery of computing. Due to the increased flexibility, better reliability, great scalability, and decreased costs have captivated businesses and individuals alike because of the pay-per-use form of the cloud environment. Cloud computing is a completely internet dependent technology where client data are stored and maintained in the data center of a cloud provider like Google, Amazon, Apple Inc., Microsoft etc. The Anomaly Detection System is one of the Intrusion Detection techniques. It’s an area in the cloud environment that is been developed in the detection of unusual activities in the cloud networks. Although, there are a variety of Intrusion Detection techniques available in the cloud environment, this review paper exposes and focuses on different IDS in cloud networks through different categorizations and conducts comparative study on the security measures of Dropbox, Google Drive and iCloud, to illuminate their strength and weakness in terms of security. 展开更多
关键词 ANOMALY detectION systems CLOUD COMPUTING CLOUD Environment Intrustion detectION systems CLOUD Security
下载PDF
Actuator Fault Detection for Sampled-Data Systems in H_∞ Setting 被引量:4
14
作者 杨晓军 翁正新 田作华 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第2期131-134,共4页
Actuator fault detection for sampled-data systems was investigated from the viewpoint of jump systems. With the aid of a prior frequency information on fault, such a problem is converted to an augmented H_∞ filtering... Actuator fault detection for sampled-data systems was investigated from the viewpoint of jump systems. With the aid of a prior frequency information on fault, such a problem is converted to an augmented H_∞ filtering problem. A simple state-space approach is then proposed to deal with sampled-data actuator fault detection problem. Compared with the existed approaches, the proposed approach allows parameters of the sampled-data system being time-varying with consideration of measurement noise. 展开更多
关键词 sampled-data systems fault detection ACTUATOR Riccati equation
下载PDF
Protecting Against Address Space Layout Randomisation (ASLR) Compromises and Return-to-Libc Attacks Using Network Intrusion Detection Systems 被引量:2
15
作者 David J Day Zheng-Xu Zhao 《International Journal of Automation and computing》 EI 2011年第4期472-483,共12页
Writable XOR executable (W⊕X) and address space layout randomisation (ASLR) have elevated the understanding necessary to perpetrate buffer overflow exploits [1] . However, they have not proved to be a panacea [1 ... Writable XOR executable (W⊕X) and address space layout randomisation (ASLR) have elevated the understanding necessary to perpetrate buffer overflow exploits [1] . However, they have not proved to be a panacea [1 3] , and so other mechanisms, such as stack guards and prelinking, have been introduced. In this paper, we show that host-based protection still does not offer a complete solution. To demonstrate the protection inadequacies, we perform an over the network brute force return-to-libc attack against a preforking concurrent server to gain remote access to a shell. The attack defeats host protection including W⊕X and ASLR. We then demonstrate that deploying a network intrusion detection systems (NIDS) with appropriate signatures can detect this attack efficiently. 展开更多
关键词 Buffer overflow stack overflow intrusion detection systems (IDS) signature rules return-to-libc attack pre-forking.
下载PDF
Fault detection and optimization for networked control systems with uncertain time-varying delay 被引量:2
16
作者 Qing Wang Zhaolei Wang +1 位作者 Chaoyang Dong Erzhuo Niu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期544-556,共13页
The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are model... The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach. 展开更多
关键词 fault detection networked control systems residual generator time-varying delay time domain optimization approach.
下载PDF
Design of a bilinear fault detection observer for singular bilinear systems 被引量:2
17
作者 Zhanshan WANG Huaguang ZHANG 《控制理论与应用(英文版)》 EI 2007年第1期28-36,共9页
A bilinear fault detection observer is proposed for a class of continuous time singular bilinear systems subject to unknown input disturbance and fault. By singular value decomposition on the original system, a biline... A bilinear fault detection observer is proposed for a class of continuous time singular bilinear systems subject to unknown input disturbance and fault. By singular value decomposition on the original system, a bilinear fault detection observer is proposed for the decomposed system via an algebraic Riccati equation, and the domain of attraction of the state estimation error is estimated. A design procedure is presented to determine the fault detection threshold. A model of flexible joint robot is used to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Singular bilinear systems (SBS) Bilinear observer Fault detection State estimation Domain of attraction
下载PDF
Design of H_∞ robust fault detection filter for nonlinear time-delay systems 被引量:4
18
作者 BAI Lei-shi HE Li-ming +1 位作者 TIAN Zuo-hua SHI Song-jiao 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1733-1741,共9页
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design pr... In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach. 展开更多
关键词 Nonlinear time-delay systems Robust fault detection filter iRFDF H∞ optimization Linear matrix inequality (LMI)
下载PDF
A Robust Fault Detection Approach for Nonlinear Systems 被引量:1
19
作者 Min-Ze Chen Qi Zhao Dong-Hua Zhou 《International Journal of Automation and computing》 EI 2006年第1期23-28,共6页
In this paper, we study the robust fault detection problem of nonlinear systems. Based on the Lyapunov method, a robust fault detection approach for a general class of nonlinear systems is proposed. A nonlinear observ... In this paper, we study the robust fault detection problem of nonlinear systems. Based on the Lyapunov method, a robust fault detection approach for a general class of nonlinear systems is proposed. A nonlinear observer is first provided, and a sufficient condition is given to make the observer locally stable. Then, a practical algorithm is presented to facilitate the realization of the proposed observer for robust fault detection. Finally, a numerical example is provided to show the effectiveness of the proposed approach. 展开更多
关键词 ROBUST nonlinear systems fault detection OBSERVER stability.
下载PDF
Fault detection based on H_∞ states observer for networked control systems 被引量:1
20
作者 Zhu Zhangqing Jiao Xiaocheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期379-387,共9页
The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS... The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective. 展开更多
关键词 networked control systems fault detection states observers TIME-DELAYS ROBUSTNESS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部