Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use...Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.展开更多
Semidifferential electroanalysis is used as an effective method for investigating microstructure and structural transition of Triton X-100 microemulsions.
Electrochemical methodologies provide a wide arsenal of options for analytical sensors,providing a high sensitivity,short analysis time,low-cost,possibility for miniaturization,and are readily portable solutions.One c...Electrochemical methodologies provide a wide arsenal of options for analytical sensors,providing a high sensitivity,short analysis time,low-cost,possibility for miniaturization,and are readily portable solutions.One common theme within the literature is the use of the word“green”.The use of this terminology is intended to demonstrate the development of electroanalytical sensing platforms utilizing biodegradable and sustainable materials.In many cases,the claims of“green”electroanalytical platforms is questionable.This minireview looks to address the green credentials that are utilized in the pursuit of electroanalytical sensors,offering insights into future research opportunities.展开更多
文摘Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.
基金supported by the Natural Science Foundation of Jiangxi province(0120023)
文摘Semidifferential electroanalysis is used as an effective method for investigating microstructure and structural transition of Triton X-100 microemulsions.
文摘Electrochemical methodologies provide a wide arsenal of options for analytical sensors,providing a high sensitivity,short analysis time,low-cost,possibility for miniaturization,and are readily portable solutions.One common theme within the literature is the use of the word“green”.The use of this terminology is intended to demonstrate the development of electroanalytical sensing platforms utilizing biodegradable and sustainable materials.In many cases,the claims of“green”electroanalytical platforms is questionable.This minireview looks to address the green credentials that are utilized in the pursuit of electroanalytical sensors,offering insights into future research opportunities.