Bioremediation of groundwater contaminated by a mixture of aromatic hydrocarbons and chlorinated solvents is typically challenged because these contaminants are degraded via distinctive oxidative and reductive pathway...Bioremediation of groundwater contaminated by a mixture of aromatic hydrocarbons and chlorinated solvents is typically challenged because these contaminants are degraded via distinctive oxidative and reductive pathways,thus requiring different amendments and redox conditions.Here,we provided the proof-of-concept of a single-stage treatment of synthetic groundwater containing toluene and trichloroethene(TCE)in a tubular bioelectrochemical reactor,known as a“bioelectric well”.Toluene was degraded by a microbial bioanode(up to 150 mmol L^(-1) d^(-1))with a polarized graphite anode(t0.2 V vs.SHE)serving as the terminal electron acceptor.The electric current deriving from microbially-driven toluene oxidation resulted in(abiotic)hydrogen production(at a stainless-steel cathode),which sustained the reductive dechlorination of TCE to less-chlorinated intermediates(i.e.,cis-DCE,VC,and ETH),at a maximum rate of 500 meq L^(-1) d^(-1),in the bulk of the reactor.A phylogenetic and functional genebased analysis of the“bioelectric well”confirmed the establishment of a microbiome harboring the metabolic potential for anaerobic toluene oxidation and TCE reductive dechlorination.However,Toluene degradation and current generation were found to be rate-limited by external mass transport phenomena,thus indicating the existing potential for further process optimization.展开更多
基金This study was supported by the European Union’s Horizon 2020 project ELECTRA(www.electra.site)under grant agreement No.826244.
文摘Bioremediation of groundwater contaminated by a mixture of aromatic hydrocarbons and chlorinated solvents is typically challenged because these contaminants are degraded via distinctive oxidative and reductive pathways,thus requiring different amendments and redox conditions.Here,we provided the proof-of-concept of a single-stage treatment of synthetic groundwater containing toluene and trichloroethene(TCE)in a tubular bioelectrochemical reactor,known as a“bioelectric well”.Toluene was degraded by a microbial bioanode(up to 150 mmol L^(-1) d^(-1))with a polarized graphite anode(t0.2 V vs.SHE)serving as the terminal electron acceptor.The electric current deriving from microbially-driven toluene oxidation resulted in(abiotic)hydrogen production(at a stainless-steel cathode),which sustained the reductive dechlorination of TCE to less-chlorinated intermediates(i.e.,cis-DCE,VC,and ETH),at a maximum rate of 500 meq L^(-1) d^(-1),in the bulk of the reactor.A phylogenetic and functional genebased analysis of the“bioelectric well”confirmed the establishment of a microbiome harboring the metabolic potential for anaerobic toluene oxidation and TCE reductive dechlorination.However,Toluene degradation and current generation were found to be rate-limited by external mass transport phenomena,thus indicating the existing potential for further process optimization.