Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion ...Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion and pitting corrosion respectively, and the content of Mg_(24)Y_5 phases determined its effect acting as cathode to accelerate the corrosion or corrosion barrier to inhibit the corrosion. Corrosion resistance of Mg-(0.25, 2.5, 5, 8, and 15) Y alloys was as follows: Rt(Mg-0.25Y) 〈 Rt(Mg-8Y) 〈 Rt(Mg-15Y) 〈 Rt(Mg-5Y) 〈 Rt(Mg-2.5Y). Y could significantly improve the corrosion resistance of the Mg-Y alloy, but the excess of Y deteriorated the corrosion resistance of the Mg-Y alloy. The optimum content of Y in the studied alloys was 2.5%.展开更多
基金Funded by the National Key Technology R&D Program of China(Nos.2011BAE22B01 and 2011BAE22B06)
文摘Corrosion of Mg–Y alloy was studied using electrochemical evaluations, immersion tests and SEM observations. Corrosion mechanisms of Mg-(0.25 and 2.5) Y alloy and Mg-(5, 8, and 15) Y alloy were uniform corrosion and pitting corrosion respectively, and the content of Mg_(24)Y_5 phases determined its effect acting as cathode to accelerate the corrosion or corrosion barrier to inhibit the corrosion. Corrosion resistance of Mg-(0.25, 2.5, 5, 8, and 15) Y alloys was as follows: Rt(Mg-0.25Y) 〈 Rt(Mg-8Y) 〈 Rt(Mg-15Y) 〈 Rt(Mg-5Y) 〈 Rt(Mg-2.5Y). Y could significantly improve the corrosion resistance of the Mg-Y alloy, but the excess of Y deteriorated the corrosion resistance of the Mg-Y alloy. The optimum content of Y in the studied alloys was 2.5%.