Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper f...Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper focuses on preparing a new kind of ferrate combined with alum to enhance its coagulation function for water purification. An effective electrolysis reactor was designed and employed in the test. Some key parameters in the process of electrolysis concerning the preparation efficiency, such as the current density, temperature and alkalinity were also investigated. The proper conditions for ferrate alum preparation were determined. Under the condition of 5V given voltage, 6h electrolyzing interval, below 2% alum concentration (in weight), a combined liquid ferrate alum products was successfully prepared, which contained 0.0294 mol/L FeO 2- 4 and 0.0302 mol/L total soluble ferron with 2% Al 2O 3. There was no insoluble ferron produced by controlling an optimum electrochemical condition.展开更多
In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis tim...In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investi- gated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: ad- sorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation effi- ciency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.展开更多
This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the ...This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the cathode compartment,where it was converted into carbonate by reaction with the hydroxideformed at cathode.Because of the low OH^- concentration in the cathode compartment,the back migrationof OH^- through the membrane was almost negligible,resulting in a higher current efficiency,say 90% or more.In this study,electroconductivity,mass transfer,current efficiency and cell voltage were measured.Thefeasibility of the process was discussed and the optimal conditions examined.展开更多
Co3O4/reduced graphene oxide composites were synthesized via a simple electrochemical method from graphene oxide and Co(NO3)2·6H2O as raw materials.Co3O4 nanoparticles with sizes of around 30-50 nm were distrib...Co3O4/reduced graphene oxide composites were synthesized via a simple electrochemical method from graphene oxide and Co(NO3)2·6H2O as raw materials.Co3O4 nanoparticles with sizes of around 30-50 nm were distributed on the surface of graphene nanosheets confirmed by scanning electron microscopy and transmission electron microscopy.Electrochemical properties of Co3O4/graphene composite were tested by cyclic voltammetry,galvanostatic charge-discharge,and electrochemical impedance spectroscopy.The Co3O4/reduced graphene oxide composite was used as the pseudocapacitor electrode in the 2 mol/L NaOH aqueous electrolyte solution.The Co3O4/reduced graphene oxide composite electrode exhibited a specific capacitance of 357 F/g at a current density of 0.5 A/g in a three-electrode system.72% of capacitance was retained when the current density increased to 3 A/g.The Co3O4/reduced graphene oxide composite prepared electrodes show a high rate capability and excellent long-term stability.After 1000 cycles of charge and discharge,the capacitance is still maintained 87% at a current density of 1 A/g,indicating that the composite is a oromising alternative electrode material used for supercapacitors.展开更多
文摘Ferrate is an excellent water treatment agent for its multi functions in oxidation, disinfection, coagulation and adsorption, but its coagulation ability depends on its dosage and is after its oxidation. This paper focuses on preparing a new kind of ferrate combined with alum to enhance its coagulation function for water purification. An effective electrolysis reactor was designed and employed in the test. Some key parameters in the process of electrolysis concerning the preparation efficiency, such as the current density, temperature and alkalinity were also investigated. The proper conditions for ferrate alum preparation were determined. Under the condition of 5V given voltage, 6h electrolyzing interval, below 2% alum concentration (in weight), a combined liquid ferrate alum products was successfully prepared, which contained 0.0294 mol/L FeO 2- 4 and 0.0302 mol/L total soluble ferron with 2% Al 2O 3. There was no insoluble ferron produced by controlling an optimum electrochemical condition.
文摘In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investi- gated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: ad- sorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation effi- ciency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.
文摘This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the cathode compartment,where it was converted into carbonate by reaction with the hydroxideformed at cathode.Because of the low OH^- concentration in the cathode compartment,the back migrationof OH^- through the membrane was almost negligible,resulting in a higher current efficiency,say 90% or more.In this study,electroconductivity,mass transfer,current efficiency and cell voltage were measured.Thefeasibility of the process was discussed and the optimal conditions examined.
基金Supported by the Natural Science Foundation of Tianjin City, China(Nos. 11JCYBJC01900, 08JCZDJC 17400).
文摘Co3O4/reduced graphene oxide composites were synthesized via a simple electrochemical method from graphene oxide and Co(NO3)2·6H2O as raw materials.Co3O4 nanoparticles with sizes of around 30-50 nm were distributed on the surface of graphene nanosheets confirmed by scanning electron microscopy and transmission electron microscopy.Electrochemical properties of Co3O4/graphene composite were tested by cyclic voltammetry,galvanostatic charge-discharge,and electrochemical impedance spectroscopy.The Co3O4/reduced graphene oxide composite was used as the pseudocapacitor electrode in the 2 mol/L NaOH aqueous electrolyte solution.The Co3O4/reduced graphene oxide composite electrode exhibited a specific capacitance of 357 F/g at a current density of 0.5 A/g in a three-electrode system.72% of capacitance was retained when the current density increased to 3 A/g.The Co3O4/reduced graphene oxide composite prepared electrodes show a high rate capability and excellent long-term stability.After 1000 cycles of charge and discharge,the capacitance is still maintained 87% at a current density of 1 A/g,indicating that the composite is a oromising alternative electrode material used for supercapacitors.