The electrochemical interaction between galena and monoclinic pyrrhotite was investigated to examine its impact on the physical and chemical properties of the mineral micro-surface.This investigation employed techniqu...The electrochemical interaction between galena and monoclinic pyrrhotite was investigated to examine its impact on the physical and chemical properties of the mineral micro-surface.This investigation employed techniques such as electrochemistry,metal ion stripping,X-ray photoelectron spectroscopy,and quantum chemistry.The electrochemical test results demonstrate that the galena surface in the electro-couple system exhibits a lower electrostatic potential and higher electrochemical activity compared to the monoclinic pyrrhotite surface,rendering it more susceptible to oxidation dissolution.Monoclinic pyrrhotite significantly amplifies the corrosion rate of the galena surface.Mulliken charge population calculations indicate that electrons are consistently transferred from galena to monoclinic pyrrhotite,with the number of electron transfers on the mineral surface increasing as the interaction distance decreases.The analysis of state density revealed a shift in the surface state density of galena towards lower energy levels,resulting in decreased reactivity and increased difficulty for the reagent to adsorb onto the mineral surface.Conversely,monoclinic pyrrhotite exhibited an opposite trend.The X-ray photoelectron spectroscopy(XPS)test results indicate that galvanic interaction leads to the formation of hydrophilic substances,PbS_(x)O_(y) and Pb(OH)_(2),on the surface of galena.Additionally,the surface of monoclinic pyrrhotite not only adsorbs Pb^(2+)but also undergoes S^(0) formation,thereby augmenting its hydrophobic nature.展开更多
Exploring novel versatile electrode materials with outstanding electrochemical performance is the key to the development of advanced energy conversion and storage devices.In this work,we aim to construct new-fangled o...Exploring novel versatile electrode materials with outstanding electrochemical performance is the key to the development of advanced energy conversion and storage devices.In this work,we aim to construct new-fangled one-dimensional(1D)quasi-layered patronite vanadium tetrasulfide(VS_(4))nanostructures by using different sulfur sources,namely thiourea,thioacetamide,and L-cysteine through an ethyleneaminetetraacetic-acid(EDTA)-mediated solvothermal process.The as-prepared VS4exhibits several unique morphologies such as urchin,fluffy nanoflower,and polyhedron with appropriate surface areas.Among the prepared nanostructures,the VS_(4)-1@NF nanostructure exhibited excellent electrochemical properties in 6 M KOH solution,and we explored its redox electrochemistry in detail.The asprepared VS_(4)-1@NF electrode exhibited battery-type redox characteristics with the highest capacity of280 C g^(-1)in a three-electrode assembly.Moreover,it offered a capacity of 123 F g^(-1)in a hybrid twoelectrode set-up at 1 A g^(-1)with the highest specific energy and specific power of 38.5 W h kg^(-1)and750 W kg^(-1),respectively.Furthermore,to ensure the practical applicability and real-world performance of the prepared hybrid AC@NF//VS_(4)-1@NF cell,we performed a cycling stability test with more than 5,000galvanostatic charge–discharge cycles at 2 A g^(-1),and the cell retained around 84.7%of its capacitance even after 5,000 cycles with a CE of 96.1%.展开更多
The development of highly safe and low-cost aqueous batteries is of great significance in the background of carbon neutrality.However,the practical deployment of aqueous batteries has been plagued due to their relativ...The development of highly safe and low-cost aqueous batteries is of great significance in the background of carbon neutrality.However,the practical deployment of aqueous batteries has been plagued due to their relatively low capacity and poor cycling stability.Herein,we propose unique conversion electrochemistry of copper selenides for robust and energetic aqueous charge storage.In situ X-ray diffraction and operando Raman techniques reveal a reversible transformation from CuSe to Cu_(2)Se through the intermediates of Cu_(3)Se_(2) and Cu_(1.8)Se.Such a conversion process activates the redox carrier of Cu^(2+)ion and delivers a remarkable rate capability of 285 mAh g^(-1) at 20 A g^(-1) and electrochemical durability up to 30,000 cycles.Furthermore,Cu^(2+)and H+coinsertion chemistry is proposed to facilitate the conversion process.As a proof-of-concept,a hybrid aqueous pouch cell coupling CuSe//Zn is capable of affording maximum energy and power densities of 190 Wh kg^(-1) and 1366W kg^(-1),respectively.展开更多
The removal of emerging micropollutants in the aquatic environment remains a global challenge.Conventional routes are often chemically,energetically,and operationally intensive,which decreases their sustainability dur...The removal of emerging micropollutants in the aquatic environment remains a global challenge.Conventional routes are often chemically,energetically,and operationally intensive,which decreases their sustainability during applications.Herein,we develop an advanced chemical-free strategy for micropollutants decontamination that is solely based on sequential electrochemistry involving ubiquitous sulfate anions in natural and engineered waters.This can be achieved via a chain reaction initiated by electrocatalytic anodic sulfate(SO_(4)^(2-))oxidation to produce persulfate(S_(2)O_(8)^(2-))and followed by a cathodic persulfate reduction to produce sulfate radicals(SO_(4)^(·-)).These SO_(4)^(·-)are powerful reactive species that enable the unselective degradation of micropollutants and yield SO_(4)^(2-)again in the treated water.The proposed flow-through electrochemical system achieves the efficient degradation(100.0%)and total organic carbon removal(65.0%)of aniline under optimized conditions with a single-pass mode.We also reveal the effectiveness of the proposed system for the degradation of a wide array of emerging micropollutants over a broad pH range and in complex matrices.This work provides the first proof-ofconcept demonstration using ubiquitous sulfate for micropollutants decontamination,making water purification more sustainable and more economical.展开更多
A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemi...A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemical double layer.The two applied pulse durations were significantly shorter than the electron-phonon relaxation time.The laser pulse durations had negligible impact on the emitted charge,which is incompatible with multiphoton emission.On the other hand,the ob-served dependence of emitted charge on laser fluence and electrode potential supports the thermionic emission mechanism.展开更多
基金supported by the National Key Research and Development Program Project(No.2022YFC2904504).
文摘The electrochemical interaction between galena and monoclinic pyrrhotite was investigated to examine its impact on the physical and chemical properties of the mineral micro-surface.This investigation employed techniques such as electrochemistry,metal ion stripping,X-ray photoelectron spectroscopy,and quantum chemistry.The electrochemical test results demonstrate that the galena surface in the electro-couple system exhibits a lower electrostatic potential and higher electrochemical activity compared to the monoclinic pyrrhotite surface,rendering it more susceptible to oxidation dissolution.Monoclinic pyrrhotite significantly amplifies the corrosion rate of the galena surface.Mulliken charge population calculations indicate that electrons are consistently transferred from galena to monoclinic pyrrhotite,with the number of electron transfers on the mineral surface increasing as the interaction distance decreases.The analysis of state density revealed a shift in the surface state density of galena towards lower energy levels,resulting in decreased reactivity and increased difficulty for the reagent to adsorb onto the mineral surface.Conversely,monoclinic pyrrhotite exhibited an opposite trend.The X-ray photoelectron spectroscopy(XPS)test results indicate that galvanic interaction leads to the formation of hydrophilic substances,PbS_(x)O_(y) and Pb(OH)_(2),on the surface of galena.Additionally,the surface of monoclinic pyrrhotite not only adsorbs Pb^(2+)but also undergoes S^(0) formation,thereby augmenting its hydrophobic nature.
基金supported by the Research Program of Dongguk University in 2022(No.S-2022-G0001-00016)。
文摘Exploring novel versatile electrode materials with outstanding electrochemical performance is the key to the development of advanced energy conversion and storage devices.In this work,we aim to construct new-fangled one-dimensional(1D)quasi-layered patronite vanadium tetrasulfide(VS_(4))nanostructures by using different sulfur sources,namely thiourea,thioacetamide,and L-cysteine through an ethyleneaminetetraacetic-acid(EDTA)-mediated solvothermal process.The as-prepared VS4exhibits several unique morphologies such as urchin,fluffy nanoflower,and polyhedron with appropriate surface areas.Among the prepared nanostructures,the VS_(4)-1@NF nanostructure exhibited excellent electrochemical properties in 6 M KOH solution,and we explored its redox electrochemistry in detail.The asprepared VS_(4)-1@NF electrode exhibited battery-type redox characteristics with the highest capacity of280 C g^(-1)in a three-electrode assembly.Moreover,it offered a capacity of 123 F g^(-1)in a hybrid twoelectrode set-up at 1 A g^(-1)with the highest specific energy and specific power of 38.5 W h kg^(-1)and750 W kg^(-1),respectively.Furthermore,to ensure the practical applicability and real-world performance of the prepared hybrid AC@NF//VS_(4)-1@NF cell,we performed a cycling stability test with more than 5,000galvanostatic charge–discharge cycles at 2 A g^(-1),and the cell retained around 84.7%of its capacitance even after 5,000 cycles with a CE of 96.1%.
基金Natural Science Foundation of Shanghai,Grant/Award Number:22ZR1403600Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20180002+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:22109029,51772197,51872192,52025028,52172219Natural Science Foundation of the Jiangsu Higher Education Institutions of China,Grant/Award Number:19KJA170001。
文摘The development of highly safe and low-cost aqueous batteries is of great significance in the background of carbon neutrality.However,the practical deployment of aqueous batteries has been plagued due to their relatively low capacity and poor cycling stability.Herein,we propose unique conversion electrochemistry of copper selenides for robust and energetic aqueous charge storage.In situ X-ray diffraction and operando Raman techniques reveal a reversible transformation from CuSe to Cu_(2)Se through the intermediates of Cu_(3)Se_(2) and Cu_(1.8)Se.Such a conversion process activates the redox carrier of Cu^(2+)ion and delivers a remarkable rate capability of 285 mAh g^(-1) at 20 A g^(-1) and electrochemical durability up to 30,000 cycles.Furthermore,Cu^(2+)and H+coinsertion chemistry is proposed to facilitate the conversion process.As a proof-of-concept,a hybrid aqueous pouch cell coupling CuSe//Zn is capable of affording maximum energy and power densities of 190 Wh kg^(-1) and 1366W kg^(-1),respectively.
基金supported by the National Natural Science Foundation of China(52170068 and U21A20161)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(QAK202108)。
文摘The removal of emerging micropollutants in the aquatic environment remains a global challenge.Conventional routes are often chemically,energetically,and operationally intensive,which decreases their sustainability during applications.Herein,we develop an advanced chemical-free strategy for micropollutants decontamination that is solely based on sequential electrochemistry involving ubiquitous sulfate anions in natural and engineered waters.This can be achieved via a chain reaction initiated by electrocatalytic anodic sulfate(SO_(4)^(2-))oxidation to produce persulfate(S_(2)O_(8)^(2-))and followed by a cathodic persulfate reduction to produce sulfate radicals(SO_(4)^(·-)).These SO_(4)^(·-)are powerful reactive species that enable the unselective degradation of micropollutants and yield SO_(4)^(2-)again in the treated water.The proposed flow-through electrochemical system achieves the efficient degradation(100.0%)and total organic carbon removal(65.0%)of aniline under optimized conditions with a single-pass mode.We also reveal the effectiveness of the proposed system for the degradation of a wide array of emerging micropollutants over a broad pH range and in complex matrices.This work provides the first proof-ofconcept demonstration using ubiquitous sulfate for micropollutants decontamination,making water purification more sustainable and more economical.
文摘A silver microelectrode with a diameter of 30μm in an aqueous K_(2)SO_(4) electrolyte was irradiated with 55 fs and 213 fs laser pulses.This caused the emission of electrons which transiently charged the electrochemical double layer.The two applied pulse durations were significantly shorter than the electron-phonon relaxation time.The laser pulse durations had negligible impact on the emitted charge,which is incompatible with multiphoton emission.On the other hand,the ob-served dependence of emitted charge on laser fluence and electrode potential supports the thermionic emission mechanism.