期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Compared discharge characteristics and film modifications of atmospheric pressure plasma jets with two different electrode geometries
1
作者 陈雄 王兴权 +2 位作者 张彬祥 袁明 杨思泽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期537-544,共8页
Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compa... Atmospheric pressure plasma jet shows great potential for polymer film processing. The electrode geometry is the key factor to determine discharge characteristics and film modification of jets. In this paper, we compared the discharge characteristics and the film modifications of atmospheric pressure plasma jets with needle-ring electrode(NRE) and doublering electrode(DRE). The results show that jet with NRE has stronger electric field intensity and higher discharge power,making it present more reactive oxygen particles and higher electron temperature, but its discharge stability is insufficient.In contrast, the jet with DRE has uniform electric field distribution of lower field intensity, which allows it to maintain stable discharge over a wide range of applied voltages. Besides, the modification results show that the treatment efficiency of PET film by NRE is higher than that by DRE. These results provide a suitable atmospheric pressure plasma jets device selection scheme for polymer film processing process. 展开更多
关键词 atmospheric pressure plasma jet electrode structure jet characteristics MODIFICATION
下载PDF
Triboelectric nanogenerator based on electrodeposited Ag octahedral nano-assemblies
2
作者 M.Edith Navarro-Segura Margarita Sanchez-Dominguez +1 位作者 Ana Arizmendi-Morquecho J.Alvarez-Quintana 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期478-495,I0012,共19页
The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication... The tremendous potential of triboelectric generators-TENGs for converting mechanical energy into electrical energy places them as one of the most promising energy harvesting technologies. In this work, the fabrication of enhanced performance TENGs using Ag octahedron nano-assemblies on ITO as electrodes significantly increases the electric charge collection of the induced tribocharges. Thereby, nanostructured electrical contacts coated with Ag macroscale nano-assemblies with octahedral features were obtained by the electrodeposition technique on flexible PET/ITO substrates. Consequently, the nanostructured triboelectric generator-TENG exhibited 65 times more maximum output power, and almost 10 times more open circuit output voltage than that of a TENG with non-nanostructured contacts passing from μW to m W capabilities, which was attributed to the increment of intrinsic interface states due to a higher effective contact area in the former. Likewise, output performances of TENGs also displayed an asymptotic behavior on the output voltage as the operating frequency of the mechanical oscillations increased, which is attributed to a decrement in the internal impedance of the device with frequency. Furthermore, it is shown that the resulting electrical output power can successfully drive low power consumption electronic devices. On that account, the present research establishes a promising platform which contributes in an original way to the development of the TENGs technology. 展开更多
关键词 Triboelectric generator Nanostructured electrodeposited electrodes Ag octahedral nanoassemblies electrode surface structure
下载PDF
Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries 被引量:2
3
作者 Arif Rashid Xingyu Zhu +6 位作者 Gulian Wang Chengzhi Ke Sha Li Pengfei Sun Zhongli Hu Qiaobao Zhang Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期71-79,共9页
The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caus... The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caused by electrode thickening.High-strength polar binders are ideal for constructing robust and long-life high-loading sulfur cathodes but show very weak interfacial interaction with non-polar sulfur materials.To address this issue,this work devises a highly integrated sulfur@polydopamine/highstrength binder composite cathodes,targeting long-lasting and high-sulfur-loading Li-S batteries.The super-adhesion polydopamine(PD)can form a uniform nano-coating over the graphene/sulfur(G-S)surface and provide strong affinity to the cross-linked polyacrylamide(c-PAM)binder,thus tightly integrating sulfur with the binder network and greatly boosting the overall mechanical strength/conductivity of the electrode.Moreover,the PD coating and c-PAM binder rich in polar groups can form two effective blockades against the effusion of soluble polysulfides.As such,the 4.5 mg cm−2 sulfur-loaded G-S@PD-c-PAM cathode achieves a capacity of 480 mAh g−1 after 300 cycles at 1 C,while maintaining a capacity of 396 mAh g−1 after 50 cycles at 0.2 C when the sulfur loading rises to 9.1 mg cm−2.This work provides a system-wide concept for constructing high-loading sulfur cathodes through integrated structural design. 展开更多
关键词 Cross-linked high-strength polar binder Highly integrated electrode structure High-sulfur-loading Li-S battery Polydopamine nano-bonding layer Strong sulfur/binder interaction
下载PDF
A review on structures,materials and applications of stretchable electrodes
4
作者 Yumeng WANG Xingsheng LI +2 位作者 Yue HOU Chengri YIN Zhenxing YIN 《Frontiers of Materials Science》 SCIE CSCD 2021年第1期54-78,共25页
With the rapid development of wearable smart devices,many researchershave carried out in-depth research on the stretchable electrodes.As one of the corecomponents for electronics,the electrode mainly transfers the ele... With the rapid development of wearable smart devices,many researchershave carried out in-depth research on the stretchable electrodes.As one of the corecomponents for electronics,the electrode mainly transfers the electrons,which plays animportant role in driving the various electrical devices.The key to the research for thestretchable electrode is to maintain the excellent electrical properties or exhibit theregular conductive change when subjected to large tensile deformation.This articleoutlines the recent progress of stretchable electrodes and gives a comprehensiveintroduction to the structures,materials,and applications,including supercapacitors,lithium-ion batteries,organic light-emitting diodes,smart sensors,and heaters.Theperformance comparison of various stretchable electrodes was proposed to clearly showthe development challenges in this field.We hope that it can provide a meaningfulreference for realizing more sensitive,smart,and low-cost wearable electrical devices inthe near future. 展开更多
关键词 wearable smart electronics stretchable electrodes electrode structures elastic substrates conductive materials
原文传递
High Spatial Resolution Electro -Optic Field -Mapping for Three Orthogonal Field Components in a Micro -Structured Electrode
5
作者 Yoshiro Matsuo Tetsuya Kawanishi +2 位作者 Satoshi Oikawa Kaoru Higuma Masayuki Izutsu 《光学学报》 EI CAS CSCD 北大核心 2003年第S1期831-832,共2页
The optically based technique of electro-optic (EO) sampling has been used for diagnosing the internal high-speed signals of integrated circuits.One of the features that make the EO sampling technique very promising i... The optically based technique of electro-optic (EO) sampling has been used for diagnosing the internal high-speed signals of integrated circuits.One of the features that make the EO sampling technique very promising is a minimal probe: the EO sampling technique does not require an electrode and ground plane incorporated as part of a probe so that, compared with conventional metal probes, the invasiveness of an EO probe is minimal. 展开更多
关键词 for High Spatial Resolution Electro Mapping for Three Orthogonal Field Components in a Micro Optic Field structured electrode in
原文传递
Three-dimensional printing of high-mass loading electrodes for energy storage applications 被引量:4
6
作者 Hao Yang Zhaoxuan Feng +3 位作者 Xiaoling Teng Lu Guan Han Hu Mingbo Wu 《InfoMat》 SCIE CAS 2021年第6期631-647,共17页
Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance co... Nanostructured materials afford a promising potential for many energy storage applications because of their extraordinary electrochemical properties.However,the remarkable electrochemical energy storage performance could only be harvested at a relatively low mass-loading via the traditional electrode fabrication process,and the scale of these materials into commercial-level mass-loading remains a daunting challenge because the ion diffusion kinetics deteriorates rapidly along with the increased thickness of the electrodes.Very recently,three-dimensional(3D)printing,a promising additive manufacturing technology,has been considered as an emerging method to address the aforementioned issues where the 3D printed electrodes could possess elaborately regulated architectures and rationally organized porosity.As a result,the outstanding electrochemical performance has been widely observed in energy storage devices made of 3D printed electrodes of high-mass loading.In this review,we systemically introduce the basic working principles of various 3D printing technologies and their practical applications to manufacture highmass loading electrodes for energy storage devices.Challenges and perspectives in 3D printing technologies for the construction of electrodes at the current stage are also outlined,aiming to offer some useful opinions for further development for this prosperous field. 展开更多
关键词 3D printing electrode structures energy storage devices high-mass loading thick electrodes
原文传递
Modulating Sand’s time by ion-transport-enhancement toward dendrite-free lithium metal anode 被引量:2
7
作者 Yu Yan Chaozhu Shu +7 位作者 Ruixin Zheng Minglu Li Zhiqun Ran Miao He Anjun Hu Ting Zeng Haoyang Xu Ying Zeng 《Nano Research》 SCIE EI CSCD 2022年第4期3150-3160,共11页
Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the ... Metallic lithium is deemed as the“Holy Grail”anode in high-energy-density secondary batteries.Uncontrollable lithium dendrite growth and related issues originated from uneven concentration distribution of Li+in the vicinity of the anode,however,induce severe safety concerns and poor cycling efficiency,dragging lithium metal anode out of practical application.Herein we address these issues by using cross-linked lithiophilic amino phosphonic acid resin as the effective host with the ion-transportenhancement feature.Based on theoretical calculations and multiphysics simulation,it is found that this ion-transportenhancement feature is capable of facilitating the self-concentration kinetics of Li+and accelerating Li^(+)transfer at the electrolyte/electrode interface,leading to uniform bulk lithium deposition.Experimental results show that the proposed lithiumhosting resin decreases the irreversible lithium capacity and improves lithium utilization(with the Coulombic efficiency(CE)of 98.8%over 130 cycles).Our work demonstrates that inducing the self-concentrating distribution of Li+at the interface can be an effective strategy for improving the interfacial ion concentration gradient and optimizing lithium deposition,which opens a new avenue for the practical development of next-generation lithium metal batteries. 展开更多
关键词 lithium-oxygen batteries electrode materials lithiophilic resin electrode structure stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部