Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system.EEG based neonatal sleep staging provides valuable information about an infant’s growth and h...Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system.EEG based neonatal sleep staging provides valuable information about an infant’s growth and health,but is challenging due to the unique characteristics of EEG and lack of standardized protocols.This study aims to develop and compare 18 machine learning models using Automated Machine Learning(autoML)technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification.The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning.The data is obtained from neonates at post-menstrual age 37±05 weeks.352530-s EEG segments from 19 infants are used to train and test the proposed models.There are twelve time and frequency domain features extracted from each channel.Each model receives the common features of nine channels as an input vector of size 108.Each model’s performance was evaluated based on a variety of evaluation metrics.The maximum mean accuracy of 84.78%and kappa of 69.63%has been obtained by the AutoML-based Random Forest estimator.This is the highest accuracy for EEG-based sleep-wake classification,until now.While,for the AutoML-based Adaboost Random Forest model,accuracy and kappa were 84.59%and 69.24%,respectively.High performance achieved in the proposed autoML-based approach can facilitate early identification and treatment of sleep-related issues in neonates.展开更多
The electroencephalogram(EEG)rhythm and functional near-infrared spectroscopy(fNIRS)activation levels have not been compared between a healthy control group(HCG)and methamphetamine user group(MUG)with different addict...The electroencephalogram(EEG)rhythm and functional near-infrared spectroscopy(fNIRS)activation levels have not been compared between a healthy control group(HCG)and methamphetamine user group(MUG)with different addiction histories.This study used 64-electrode EEG and fNIRS to conduct an experiment that analyzed the resting and craving states.The EEG and fNIRS data of 56 participants were collected,including 14 healthy participants,14 methamphetamine users with an addiction history of 0.5–5 years,14 users with an addiction history of 5–10 years,and 14 users with an addiction history of 10–15 years.Isolated effective coherence(iCoh)within the brain network was used to process the EEG data.Statistical analysis was performed to compare differences in iCoh among the delta,theta,alpha,beta,and gamma bands and explore oxyhemoglobin activation levels in the ventrolateral prefrontal cortex,dorsolateral prefrontal cortex,orbitofrontal cortex,and frontopolar prefrontal cortex(FPC)of the control group.Finally,the Kmeans,Gaussian mixed model(GMM),linear discriminant analysis(LDA),support vector machine(SVM),Bayes,and convolutional neural networks(CNN)algorithms were used to classify methamphetamine users based on drug and neutral images.A 3-class accuracy was achieved.Changes in EEG and fNIRS activation levels of HCG and MUG with varied addiction histories were demonstrated.展开更多
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate ...The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.展开更多
Many studies suggest that EEG signals provide enough information for the detection of human emotions with feature based classification methods. However, very few studies have reported a classification method that reli...Many studies suggest that EEG signals provide enough information for the detection of human emotions with feature based classification methods. However, very few studies have reported a classification method that reliably works for individual participants (classification accuracy well over 90%). Further, a necessary condition for real life applications is a method that allows, irrespective of the immense individual difference among participants, to have minimal variance over the individual classification accuracy. We conducted offline computer aided emotion classification experiments using strict experimental controls. We analyzed EEG data collected from nine participants using validated film clips to induce four different emotional states (amused, disgusted, sad and neutral). The classification rate was evaluated using both unsupervised and supervised learning algorithms (in total seven “state of the art” algorithms were tested). The largest classification accuracy was computed by means of Support Vector Machine. Accuracy rate was on average 97.2%. The experimental protocol effectiveness was further supported by very small variance among individual participants’ classification accuracy (within interval: 96.7%, 98.3%). Classification accuracy evaluated on reduced number of electrodes suggested, consistently with psychological constructionist approaches, that we were able to classify emotions considering cortical activity from areas involved in emotion representation. The experimental protocol therefore appeared to be a key factor to improve the classification outcome by means of data quality improvements.展开更多
Emotion recognition systems are helpful in human-machine interactions and Intelligence Medical applications.Electroencephalogram(EEG)is closely related to the central nervous system activity of the brain.Compared with...Emotion recognition systems are helpful in human-machine interactions and Intelligence Medical applications.Electroencephalogram(EEG)is closely related to the central nervous system activity of the brain.Compared with other signals,EEG is more closely associated with the emotional activity.It is essential to study emotion recognition based on EEG information.In the research of emotion recognition based on EEG,it is a common problem that the results of individual emotion classification vary greatly under the same scheme of emotion recognition,which affects the engineering application of emotion recognition.In order to improve the overall emotion recognition rate of the emotion classification system,we propose the CSP_VAR_CNN(CVC)emotion recognition system,which is based on the convolutional neural network(CNN)algorithm to classify emotions of EEG signals.Firstly,the emotion recognition system using common spatial patterns(CSP)to reduce the EEG data,then the standardized variance(VAR)is selected as the parameter to form the emotion feature vectors.Lastly,a 5-layer CNN model is built to classify the EEG signal.The classification results show that this emotion recognition system can better the overall emotion recognition rate:the variance has been reduced to 0.0067,which is a decrease of 64%compared to that of the CSP_VAR_SVM(CVS)system.On the other hand,the average accuracy reaches 69.84%,which is 0.79%higher than that of the CVS system.It shows that the overall emotion recognition rate of the proposed emotion recognition system is more stable,and its emotion recognition rate is higher.展开更多
This paper proposes the use of time-frequency and wavelet transform features for emotion recognition via EEG signals. The proposed experiment has been carefully designed with EEG electrodes placed at FP1 and FP2 and u...This paper proposes the use of time-frequency and wavelet transform features for emotion recognition via EEG signals. The proposed experiment has been carefully designed with EEG electrodes placed at FP1 and FP2 and using images provided by the Affective Picture System (IAP), which was developed by the University of Florida. A total of two time-domain features, two frequen-cy-domain features, as well as discrete wavelet transform coefficients have been studied using Artificial Neural Network (ANN) as the classifier, and the best combination of these features has been determined. Using the data collected, the best detection accuracy achievable by the proposed schemed is about 81.8%.展开更多
In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in...In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI.展开更多
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented ...Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI.展开更多
大约80%的水上交通事故涉及人为因素,驾驶员疲劳是船舶交通事故发生的关键原因之一。近年来,基于脑电图(Electroencephalogram,EEG)的驾驶员疲劳检测技术的发展,有助于快速准确地识别驾驶员的疲劳程度。然而,由于EEG信号的敏感性和个体...大约80%的水上交通事故涉及人为因素,驾驶员疲劳是船舶交通事故发生的关键原因之一。近年来,基于脑电图(Electroencephalogram,EEG)的驾驶员疲劳检测技术的发展,有助于快速准确地识别驾驶员的疲劳程度。然而,由于EEG信号的敏感性和个体差异,影响驾驶员疲劳检测的准确性。该试验在船舶模拟器中进行,收集多个受试者的脑电信号。选取与疲劳相关的脑前额叶的3个通道脑电信号进行预处理,并提取基于EEG的多种特征,例如平均绝对值(Mean Absolute Value,MAV)、标准差(Standard Deviation,SD)、均方根(Root Mean Square,RMS)和香农熵(Shannon Entropy,SE)。基于卡罗林斯卡嗜睡量(Karolinska Sleepiness Scale,KSS)表将驾驶员的疲劳分为清醒、中等和疲劳等3个程度。将多种分类算法的分类准确率进行比较,双向长短期记忆网络(Bi-Long Short Term Memory,Bi-LSTM)分类器效果最佳,分类准确率达到88.63%。结果表明:该方法在研究船舶驾驶员跨个体的三分类问题中能获得显著的效果。展开更多
In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/4...In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/46 cases.Simultaneously,there was a markeddrop in Bp,P【0.05.Following the shocked time prolonged,dysrhythmia was getting severe。AfterEA”Rengzhong"(n=14)or“Zusanli”(n=12),BP was significantly increased(P【0.05),anddysrhythmia of EEG showed clear improvement in most of the rats。There was a close relation be-tween the changes of EEG and BP,the change of EEG had a direct bearing on the change of BP.展开更多
Even with an unprecedented breakthrough of deep learning in electroencephalography(EEG),collecting adequate labelled samples is a critical problem due to laborious and time‐consuming labelling.Recent study proposed t...Even with an unprecedented breakthrough of deep learning in electroencephalography(EEG),collecting adequate labelled samples is a critical problem due to laborious and time‐consuming labelling.Recent study proposed to solve the limited label problem via domain adaptation methods.However,they mainly focus on reducing domain discrepancy without considering task‐specific decision boundaries,which may lead to feature distribution overmatching and therefore make it hard to match within a large domain gap completely.A novel self‐training maximum classifier discrepancy method for EEG classification is proposed in this study.The proposed approach detects samples from a new subject beyond the support of the existing source subjects by maximising the discrepancies between two classifiers'outputs.Besides,a self‐training method that uses unlabelled test data to fully use knowledge from the new subject and further reduce the domain gap is proposed.Finally,a 3D Cube that incorporates the spatial and frequency information of the EEG data to create input features of a Convolutional Neural Network(CNN)is constructed.Extensive experiments on SEED and SEED‐IV are conducted.The experimental evaluations exhibit that the proposed method can effectively deal with domain transfer problems and achieve better performance.展开更多
Electroencephalography(EEG)eye state classification becomes an essential tool to identify the cognitive state of humans.It can be used in several fields such as motor imagery recognition,drug effect detection,emotion ...Electroencephalography(EEG)eye state classification becomes an essential tool to identify the cognitive state of humans.It can be used in several fields such as motor imagery recognition,drug effect detection,emotion categorization,seizure detection,etc.With the latest advances in deep learning(DL)models,it is possible to design an accurate and prompt EEG EyeState classification problem.In this view,this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification(CBADL-BEESC)model.The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState.The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors.In addition,extreme learning machine autoencoder(ELM-AE)model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA.The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.展开更多
Depression has become a major health threat around the world,especially for older people,so the effective detection method for depression is a great public health challenge.Electroencephalogram(EEG)can be used as a bi...Depression has become a major health threat around the world,especially for older people,so the effective detection method for depression is a great public health challenge.Electroencephalogram(EEG)can be used as a biomarker to effectively explore depression recognition.Motivated by the studies that multiple smaller scale kernels could increase nonlinear expression compared to a larger kernel,this article proposes a model named the three-dimensional multiscale kernels convolutional neural network model for the depression disorder recognition(3DMKDR),which is a three-dimensional convolutional neural network model with multiscale convolutional kernels for depression recognition based on EEG signals.A three-dimensional structure of the EEG is built by extending one-dimensional feature sequences into a two-dimensional electrode matrix to excavate the related spatiotemporal information among electrodes and the collected electrode matrix.By the major depressive disorder(MDD)and the multi-modal open dataset for mental-disorder analysis(MODMA)datasets,the experiment shows that the accuracies of depression recognition are up to99.86%and 98.01%in the subject-dependent experiment,and 95.80%and 82.27%in the subjectindependent experiment,which are higher than alternative competitive methods.The experimental results demonstrate that the proposed 3DMKDR is potentially useful for depression recognition in older persons in the future.展开更多
Today,electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor.These signals are frequently used to obtain information about brain neurons and may detect disorders that...Today,electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor.These signals are frequently used to obtain information about brain neurons and may detect disorders that affect the brain,such as epilepsy.Electroencephalogram(EEG)signals are however prone to artefacts.These artefacts must be removed to obtain accurate and meaningful signals.Currently,computer-aided systems have been used for this purpose.These systems provide high computing power,problem-specific development,and other advantages.In this study,a new clinical decision support system was developed for individuals to detect epileptic seizures using EEG signals.Comprehensive classification results were obtained for the extracted filtered features from the time-frequency domain.The classification accuracies of the time-frequency features obtained from discrete continuous transform(DCT),fractional Fourier transform(FrFT),and Hilbert transform(HT)are compared.Artificial neural networks(ANN)were applied,and back propagation(BP)was used as a learning method.Many studies in the literature describe a single BP algorithm.In contrast,we looked at several BP algorithms including gradient descent with momentum(GDM),scaled conjugate gradient(SCG),and gradient descent with adaptive learning rate(GDA).The most successful algorithm was tested using simulations made on three separate datasets(DCT_EEG,FrFT_EEG,and HT_EEG)that make up the input data.The HT algorithm was the most successful EEG feature extractor in terms of classification accuracy rates in each EEG dataset and had the highest referred accuracy rates of the algorithms.As a result,HT_EEG gives the highest accuracy for all algorithms,and the highest accuracy of 87.38%was produced by the SCG algorithm.展开更多
Sleep plays a vital role in optimum working of the brain and the body.Numerous people suffer from sleep-oriented illnesses like apnea,insomnia,etc.Sleep stage classification is a primary process in the quantitative ex...Sleep plays a vital role in optimum working of the brain and the body.Numerous people suffer from sleep-oriented illnesses like apnea,insomnia,etc.Sleep stage classification is a primary process in the quantitative examination of polysomnographic recording.Sleep stage scoring is mainly based on experts’knowledge which is laborious and time consuming.Hence,it can be essential to design automated sleep stage classification model using machine learning(ML)and deep learning(DL)approaches.In this view,this study focuses on the design of Competitive Multi-verse Optimization with Deep Learning Based Sleep Stage Classification(CMVODL-SSC)model using Electroencephalogram(EEG)signals.The proposed CMVODL-SSC model intends to effectively categorize different sleep stages on EEG signals.Primarily,data pre-processing is performed to convert the actual data into useful format.Besides,a cascaded long short term memory(CLSTM)model is employed to perform classification process.At last,the CMVO algorithm is utilized for optimally tuning the hyperparameters involved in the CLSTM model.In order to report the enhancements of the CMVODL-SSC model,a wide range of simulations was carried out and the results ensured the better performance of the CMVODL-SSC model with average accuracy of 96.90%.展开更多
文摘Automatic sleep staging of neonates is essential for monitoring their brain development and maturity of the nervous system.EEG based neonatal sleep staging provides valuable information about an infant’s growth and health,but is challenging due to the unique characteristics of EEG and lack of standardized protocols.This study aims to develop and compare 18 machine learning models using Automated Machine Learning(autoML)technique for accurate and reliable multi-channel EEG-based neonatal sleep-wake classification.The study investigates autoML feasibility without extensive manual selection of features or hyperparameter tuning.The data is obtained from neonates at post-menstrual age 37±05 weeks.352530-s EEG segments from 19 infants are used to train and test the proposed models.There are twelve time and frequency domain features extracted from each channel.Each model receives the common features of nine channels as an input vector of size 108.Each model’s performance was evaluated based on a variety of evaluation metrics.The maximum mean accuracy of 84.78%and kappa of 69.63%has been obtained by the AutoML-based Random Forest estimator.This is the highest accuracy for EEG-based sleep-wake classification,until now.While,for the AutoML-based Adaboost Random Forest model,accuracy and kappa were 84.59%and 69.24%,respectively.High performance achieved in the proposed autoML-based approach can facilitate early identification and treatment of sleep-related issues in neonates.
基金supported by Shanghai Municipal Science and Technology Plan Project(No.22010502400)National Natural Science Foundation of China(Nos.82072228,92048205,and 62376149).
文摘The electroencephalogram(EEG)rhythm and functional near-infrared spectroscopy(fNIRS)activation levels have not been compared between a healthy control group(HCG)and methamphetamine user group(MUG)with different addiction histories.This study used 64-electrode EEG and fNIRS to conduct an experiment that analyzed the resting and craving states.The EEG and fNIRS data of 56 participants were collected,including 14 healthy participants,14 methamphetamine users with an addiction history of 0.5–5 years,14 users with an addiction history of 5–10 years,and 14 users with an addiction history of 10–15 years.Isolated effective coherence(iCoh)within the brain network was used to process the EEG data.Statistical analysis was performed to compare differences in iCoh among the delta,theta,alpha,beta,and gamma bands and explore oxyhemoglobin activation levels in the ventrolateral prefrontal cortex,dorsolateral prefrontal cortex,orbitofrontal cortex,and frontopolar prefrontal cortex(FPC)of the control group.Finally,the Kmeans,Gaussian mixed model(GMM),linear discriminant analysis(LDA),support vector machine(SVM),Bayes,and convolutional neural networks(CNN)algorithms were used to classify methamphetamine users based on drug and neutral images.A 3-class accuracy was achieved.Changes in EEG and fNIRS activation levels of HCG and MUG with varied addiction histories were demonstrated.
基金financially supported by the National Natural Science Foundation of China,No.61263011,81000554Program in Sun Yat-sen University supported by Fundamental Research Funds for the Central Universities,No.11ykpy07+1 种基金Natural Science Foundation of Guangdong Province,No.S2011010005309Innovation Fund of Xinjiang Medical University,No.XJC201209
文摘The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy.
文摘Many studies suggest that EEG signals provide enough information for the detection of human emotions with feature based classification methods. However, very few studies have reported a classification method that reliably works for individual participants (classification accuracy well over 90%). Further, a necessary condition for real life applications is a method that allows, irrespective of the immense individual difference among participants, to have minimal variance over the individual classification accuracy. We conducted offline computer aided emotion classification experiments using strict experimental controls. We analyzed EEG data collected from nine participants using validated film clips to induce four different emotional states (amused, disgusted, sad and neutral). The classification rate was evaluated using both unsupervised and supervised learning algorithms (in total seven “state of the art” algorithms were tested). The largest classification accuracy was computed by means of Support Vector Machine. Accuracy rate was on average 97.2%. The experimental protocol effectiveness was further supported by very small variance among individual participants’ classification accuracy (within interval: 96.7%, 98.3%). Classification accuracy evaluated on reduced number of electrodes suggested, consistently with psychological constructionist approaches, that we were able to classify emotions considering cortical activity from areas involved in emotion representation. The experimental protocol therefore appeared to be a key factor to improve the classification outcome by means of data quality improvements.
基金This work has been supported by the National Nature Science Foundation of China(No.61503423,H.P.Jiang).And its URls is http://www.nsfc.gov.cn/.
文摘Emotion recognition systems are helpful in human-machine interactions and Intelligence Medical applications.Electroencephalogram(EEG)is closely related to the central nervous system activity of the brain.Compared with other signals,EEG is more closely associated with the emotional activity.It is essential to study emotion recognition based on EEG information.In the research of emotion recognition based on EEG,it is a common problem that the results of individual emotion classification vary greatly under the same scheme of emotion recognition,which affects the engineering application of emotion recognition.In order to improve the overall emotion recognition rate of the emotion classification system,we propose the CSP_VAR_CNN(CVC)emotion recognition system,which is based on the convolutional neural network(CNN)algorithm to classify emotions of EEG signals.Firstly,the emotion recognition system using common spatial patterns(CSP)to reduce the EEG data,then the standardized variance(VAR)is selected as the parameter to form the emotion feature vectors.Lastly,a 5-layer CNN model is built to classify the EEG signal.The classification results show that this emotion recognition system can better the overall emotion recognition rate:the variance has been reduced to 0.0067,which is a decrease of 64%compared to that of the CSP_VAR_SVM(CVS)system.On the other hand,the average accuracy reaches 69.84%,which is 0.79%higher than that of the CVS system.It shows that the overall emotion recognition rate of the proposed emotion recognition system is more stable,and its emotion recognition rate is higher.
文摘This paper proposes the use of time-frequency and wavelet transform features for emotion recognition via EEG signals. The proposed experiment has been carefully designed with EEG electrodes placed at FP1 and FP2 and using images provided by the Affective Picture System (IAP), which was developed by the University of Florida. A total of two time-domain features, two frequen-cy-domain features, as well as discrete wavelet transform coefficients have been studied using Artificial Neural Network (ANN) as the classifier, and the best combination of these features has been determined. Using the data collected, the best detection accuracy achievable by the proposed schemed is about 81.8%.
文摘In electroencephalogram (EEG) modeling techniques, data segment selection is the first and still an important step. The influence of a set of data-segment-related parameters on feature extraction and classification in an EEG-based brain-computer interface (BCI) was studied. An auto search algorithm was developed to study four datasegment-related parameters in each trial of 12 subjects’ EEG. The length of data segment (LDS), the start position of data (SPD) segment, AR order, and number of trials (NT) were used to build the model. The study showed that, compared with the classification ratio (CR) without parameter selection, the CR was increased by 20% to 30% with proper selection of these data-segment-related parameters, and the optimum parameter values were subject-dependent. This suggests that the data-segment-related parameters should be individualized when building models for BCI.
基金Supported by the National Natural Science Foundation of China (No. 30570485)the Shanghai "Chen Guang" Project (No. 09CG69).
文摘Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network' s smoothing parameters and hidden central vector for detemlining hidden neurons. Utilizing the standard dataset I (a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition Js got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7 % ) of the competition. This technology provides an effective way to EEG classification in practical system of BCI.
文摘大约80%的水上交通事故涉及人为因素,驾驶员疲劳是船舶交通事故发生的关键原因之一。近年来,基于脑电图(Electroencephalogram,EEG)的驾驶员疲劳检测技术的发展,有助于快速准确地识别驾驶员的疲劳程度。然而,由于EEG信号的敏感性和个体差异,影响驾驶员疲劳检测的准确性。该试验在船舶模拟器中进行,收集多个受试者的脑电信号。选取与疲劳相关的脑前额叶的3个通道脑电信号进行预处理,并提取基于EEG的多种特征,例如平均绝对值(Mean Absolute Value,MAV)、标准差(Standard Deviation,SD)、均方根(Root Mean Square,RMS)和香农熵(Shannon Entropy,SE)。基于卡罗林斯卡嗜睡量(Karolinska Sleepiness Scale,KSS)表将驾驶员的疲劳分为清醒、中等和疲劳等3个程度。将多种分类算法的分类准确率进行比较,双向长短期记忆网络(Bi-Long Short Term Memory,Bi-LSTM)分类器效果最佳,分类准确率达到88.63%。结果表明:该方法在研究船舶驾驶员跨个体的三分类问题中能获得显著的效果。
基金The Project Supported by National Natural Science Foundation of China
文摘In present work,EEG and BP were used as the indexes to observe the relationbetween the change of EEG and the change of BP in the endotoxic shocked rats。At maintainingshock for 1 hr,dysrhythmia of EEG appeared in 38/46 cases.Simultaneously,there was a markeddrop in Bp,P【0.05.Following the shocked time prolonged,dysrhythmia was getting severe。AfterEA”Rengzhong"(n=14)or“Zusanli”(n=12),BP was significantly increased(P【0.05),anddysrhythmia of EEG showed clear improvement in most of the rats。There was a close relation be-tween the changes of EEG and BP,the change of EEG had a direct bearing on the change of BP.
基金supported in part by the National Natural Science Foundation of China under Grants 61866039in part by the Natural Science Foundation of Chongqing,China(No.cstc2019jscxmbdxX0021)+1 种基金in part by the Excellent Youths Project for Basic Research of Yunnan Province(No.202101AW070015)in part by the Key Cooperation Project of Chongqing Municipal Education Commission(No.HZ2021008).
文摘Even with an unprecedented breakthrough of deep learning in electroencephalography(EEG),collecting adequate labelled samples is a critical problem due to laborious and time‐consuming labelling.Recent study proposed to solve the limited label problem via domain adaptation methods.However,they mainly focus on reducing domain discrepancy without considering task‐specific decision boundaries,which may lead to feature distribution overmatching and therefore make it hard to match within a large domain gap completely.A novel self‐training maximum classifier discrepancy method for EEG classification is proposed in this study.The proposed approach detects samples from a new subject beyond the support of the existing source subjects by maximising the discrepancies between two classifiers'outputs.Besides,a self‐training method that uses unlabelled test data to fully use knowledge from the new subject and further reduce the domain gap is proposed.Finally,a 3D Cube that incorporates the spatial and frequency information of the EEG data to create input features of a Convolutional Neural Network(CNN)is constructed.Extensive experiments on SEED and SEED‐IV are conducted.The experimental evaluations exhibit that the proposed method can effectively deal with domain transfer problems and achieve better performance.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/180/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR04)The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.
文摘Electroencephalography(EEG)eye state classification becomes an essential tool to identify the cognitive state of humans.It can be used in several fields such as motor imagery recognition,drug effect detection,emotion categorization,seizure detection,etc.With the latest advances in deep learning(DL)models,it is possible to design an accurate and prompt EEG EyeState classification problem.In this view,this study presents a novel compact bat algorithm with deep learning model for biomedical EEG EyeState classification(CBADL-BEESC)model.The major intention of the CBADL-BEESC technique aims to categorize the presence of EEG EyeState.The CBADL-BEESC model performs feature extraction using the ALexNet model which helps to produce useful feature vectors.In addition,extreme learning machine autoencoder(ELM-AE)model is applied to classify the EEG signals and the parameter tuning of the ELM-AE model is performed using CBA.The experimental result analysis of the CBADL-BEESC model is carried out on benchmark results and the comparative outcome reported the supremacy of the CBADL-BEESC model over the recent methods.
基金supported by the National Natural Science Foundation of China(Nos.61862058,61962034,and 8226070356)in part by the Gansu Provincial Science&Technology Department(No.20JR10RA076)。
文摘Depression has become a major health threat around the world,especially for older people,so the effective detection method for depression is a great public health challenge.Electroencephalogram(EEG)can be used as a biomarker to effectively explore depression recognition.Motivated by the studies that multiple smaller scale kernels could increase nonlinear expression compared to a larger kernel,this article proposes a model named the three-dimensional multiscale kernels convolutional neural network model for the depression disorder recognition(3DMKDR),which is a three-dimensional convolutional neural network model with multiscale convolutional kernels for depression recognition based on EEG signals.A three-dimensional structure of the EEG is built by extending one-dimensional feature sequences into a two-dimensional electrode matrix to excavate the related spatiotemporal information among electrodes and the collected electrode matrix.By the major depressive disorder(MDD)and the multi-modal open dataset for mental-disorder analysis(MODMA)datasets,the experiment shows that the accuracies of depression recognition are up to99.86%and 98.01%in the subject-dependent experiment,and 95.80%and 82.27%in the subjectindependent experiment,which are higher than alternative competitive methods.The experimental results demonstrate that the proposed 3DMKDR is potentially useful for depression recognition in older persons in the future.
基金This study was supported by The Scientific Technological Research Council of Turkey(TÜBITAK)under the Project No.118E682.
文摘Today,electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor.These signals are frequently used to obtain information about brain neurons and may detect disorders that affect the brain,such as epilepsy.Electroencephalogram(EEG)signals are however prone to artefacts.These artefacts must be removed to obtain accurate and meaningful signals.Currently,computer-aided systems have been used for this purpose.These systems provide high computing power,problem-specific development,and other advantages.In this study,a new clinical decision support system was developed for individuals to detect epileptic seizures using EEG signals.Comprehensive classification results were obtained for the extracted filtered features from the time-frequency domain.The classification accuracies of the time-frequency features obtained from discrete continuous transform(DCT),fractional Fourier transform(FrFT),and Hilbert transform(HT)are compared.Artificial neural networks(ANN)were applied,and back propagation(BP)was used as a learning method.Many studies in the literature describe a single BP algorithm.In contrast,we looked at several BP algorithms including gradient descent with momentum(GDM),scaled conjugate gradient(SCG),and gradient descent with adaptive learning rate(GDA).The most successful algorithm was tested using simulations made on three separate datasets(DCT_EEG,FrFT_EEG,and HT_EEG)that make up the input data.The HT algorithm was the most successful EEG feature extractor in terms of classification accuracy rates in each EEG dataset and had the highest referred accuracy rates of the algorithms.As a result,HT_EEG gives the highest accuracy for all algorithms,and the highest accuracy of 87.38%was produced by the SCG algorithm.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R235)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR10).
文摘Sleep plays a vital role in optimum working of the brain and the body.Numerous people suffer from sleep-oriented illnesses like apnea,insomnia,etc.Sleep stage classification is a primary process in the quantitative examination of polysomnographic recording.Sleep stage scoring is mainly based on experts’knowledge which is laborious and time consuming.Hence,it can be essential to design automated sleep stage classification model using machine learning(ML)and deep learning(DL)approaches.In this view,this study focuses on the design of Competitive Multi-verse Optimization with Deep Learning Based Sleep Stage Classification(CMVODL-SSC)model using Electroencephalogram(EEG)signals.The proposed CMVODL-SSC model intends to effectively categorize different sleep stages on EEG signals.Primarily,data pre-processing is performed to convert the actual data into useful format.Besides,a cascaded long short term memory(CLSTM)model is employed to perform classification process.At last,the CMVO algorithm is utilized for optimally tuning the hyperparameters involved in the CLSTM model.In order to report the enhancements of the CMVODL-SSC model,a wide range of simulations was carried out and the results ensured the better performance of the CMVODL-SSC model with average accuracy of 96.90%.