A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-...A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-annealing conditions on microstructures,in terms of crystallisation,pores formation and grain growth,were investigated using SEM/EDX and XRD. Corrosion behaviours of these coatings before and after various treatments were evaluated with anodic polarisation in 0.5 mol/L H2SO4 solution.The results show that the furnace-annealing produces either a mixture of nanocrystallined Ni and amorphous phases or precipitated Ni3P phase distributed in nanocrystallined Ni-based matrix,depending on annealing temperatures,whilst the laser treatment under the operating conditions only produces nanocrystallined Ni-based matrix with Ni3P precipitates.Corrosion performance of the coatings treated by both the laser and the furnace-annealing is dependent on the annealing temperature and laser operating conditions.Corrosion mechanisms of various treated-coatings were discussed in the consideration of phase constitutes and proportion,grain sizes of both Ni and Ni3P phases,pores formation and residual stresses.展开更多
Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity o...Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.展开更多
The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings conta...The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings containing diamond particles with the sizes in the range of 0—0.5,0.5—1,1—2μm are prepared.The surface morphology of diamond particles and composite coatings are observed by scanning electron microscopy(SEM).The wear tests of composite coatings are comparatively evaluated by sliding against a cemented tungsten carbide ball.The 3D morphology of worn scar is evaluated by using a 3Dprofiler.The results show that the hardness and wear resistance of composite coatings can increase with the increase of particle sizes.The mixture mechanism of adhesive wear and abrasive wear turn into single abrasive wear with the increase of particle sizes as well.The transformation of wear behaviour is mainly attributed to particle roles during wear process.展开更多
Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulf...Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.展开更多
There are many factors that affect the phosphorus content in the electroless Ni-P coatings The effects of the compositions of plating solution,the PH values of plat ing solution and the deposition temperature on the p...There are many factors that affect the phosphorus content in the electroless Ni-P coatings The effects of the compositions of plating solution,the PH values of plat ing solution and the deposition temperature on the phosphorus content in Ni-P coatings were investigated in this paper It is found that the phosphorus content in Ni-P coatings increases and the deposition rate decreases with decreasing PH values,nickel sulphate NiSO4 content of plating solution and the deposition temperature.展开更多
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p...Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of amm...To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of ammonium perchlorate (AP) and AP-based solid state propellants. X-ray diffractometry (XRD), scanning electron microscopy (SEM), inductive coupled plasma emission spectrometry (ICP), differential scanning calorimetry (DSC) as well as strand burner method were employed to characterize the crystal phase, morphologies, chemical composition, and catalytic activity of the as-synthesized material. The results show that a continuous layer of about 100 nm amorphous Co72.6B27.4 covers the surfaces of M particles. Addition of the as-synthesized Co-B/A1 nanocomposites as catalysts promotes AP decomposition, enhances the burning rate, and lowers the pressure exponent of the AP-based propellants considerably.展开更多
A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducin...A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducing consumption of copper powders. In the processes of sensitization and activation, AgNO3 replaces the conventional PdCl2, which solves the impurity of bath. Oxide film on the surface of copper powders was tested by chemical analysis. Ag element tested by XRD and XRF is in the form of Ago and exists on the surface of copper powders, which acts as catalyzer in reduction reaction. Morphology and composition of the coating were characterized by SEM and XRD respectively.展开更多
Cr_2O_3-forming ferritic stainless steels have been widely explored as intermediate temperature solid oxide fuel cells(SOFCs) interconnects.However,the evaporation of chromia scale might migrate to and poison the cath...Cr_2O_3-forming ferritic stainless steels have been widely explored as intermediate temperature solid oxide fuel cells(SOFCs) interconnects.However,the evaporation of chromia scale might migrate to and poison the cathode,leading to degradation of the cell performance.In this study,Ni-Co-Fe-P coatings were deposited on the ferritic stainless steel by means of a cost-effective technique of electroless method.They are expected to be converted into(Ni,Co,Fe)_3O_4 spinel with a high electrical conductivity and CTE match with stainless steel,which can block the evaporation of chromia formed on steel substrate exposed to the cathode environment of the SOFC. The effects of pH,mass ratio of FeSO_4/(FeSO_4 + NiSO_4 + CoSO_4) and temperature of solution on the deposition rate,compositions,surface morphologies and structures of the Ni-Co-Fe-P coatings were investigated.The results indicated that the deposition rate increased with increasing pH when pH was lower than 9 and then reduced when pH was higher than 9.The deposition rate increased with increasing temperature when temperature was lower than 80℃and then decreased when temperature was higher than 80℃.The deposition rate decreased with the increase in mass ratio of FeSO_4/(NiSO_4 + CoSO_4 + FeSO_4).The coatings consisted of Ni,Co,Fe and P.The phase structure of the coating was amorphous.展开更多
The work in this study is focused on investigation of composite nickel coatings. The coatings were deposited on ductile cast iron samples of different composition by electroless method EFTTOM NICKEL with addition of s...The work in this study is focused on investigation of composite nickel coatings. The coatings were deposited on ductile cast iron samples of different composition by electroless method EFTTOM NICKEL with addition of strengthening nanodiamond particles (2-4 nm), The samples were prepared by casting and austempering. The microstructure, microhardness and wear resistance of the coatings were investigated. The thickness of the coatings was also determined (8-10μm). Metallographic analyses, SEM (scanning electron microscopic) investigation, microhardness measurements by knoop method, wear resistance tests were carried out. The coatings with and without heat treatment at 290℃, 6 h were tested. Duplication of microhardness value and improvement of the coating's properties of heat treated coatings were observed.展开更多
基金Project(Y2006F40) supported by the Natural Science Foundation of Shandong Province, ChinaProject(N00003) supported by UK Northwest Science Council through Northwest Laser Engineering Consortium (NWLEC)
文摘A comparative study of amorphous electroless Ni-W-P coatings on mild steel substrate treated by a high power diode laser and furnace annealing was presented.Effects of different laser operating parameters and furnace-annealing conditions on microstructures,in terms of crystallisation,pores formation and grain growth,were investigated using SEM/EDX and XRD. Corrosion behaviours of these coatings before and after various treatments were evaluated with anodic polarisation in 0.5 mol/L H2SO4 solution.The results show that the furnace-annealing produces either a mixture of nanocrystallined Ni and amorphous phases or precipitated Ni3P phase distributed in nanocrystallined Ni-based matrix,depending on annealing temperatures,whilst the laser treatment under the operating conditions only produces nanocrystallined Ni-based matrix with Ni3P precipitates.Corrosion performance of the coatings treated by both the laser and the furnace-annealing is dependent on the annealing temperature and laser operating conditions.Corrosion mechanisms of various treated-coatings were discussed in the consideration of phase constitutes and proportion,grain sizes of both Ni and Ni3P phases,pores formation and residual stresses.
文摘Technology and properties of electroless composite RE-Ni-B-SiC coatings have been investigated.Results show that stabilizer plys a decisive role in electroless composite Ni-B-SiC,the addition of appropriate quantity of RE(rare earth) into the Ni-B-SiC bath not only increases SiC content in composite coatings,their hardness and wear resistance but also improves crystalline fineness,Wear resistance increases with the increase of SiC.Hardness and wear resistance of composite coatings reach peak values a fter heat treatment at 4OO and 500℃ for 1h respectively.
基金Supported by the National Natural Science Foundation of China(51175260)the Fundamental Research Funds for the Central Universities(NP2012506)the Open Fund of Jiangsu Province Key Laboratory for Materials Tribology(kjsmcx0901)
文摘The wear behaviour of composite coatings is related to the nature of embedded particles.The effects of particle size on the wear behaviour of composite coatings are analyzed.Electroless nickel composite coatings containing diamond particles with the sizes in the range of 0—0.5,0.5—1,1—2μm are prepared.The surface morphology of diamond particles and composite coatings are observed by scanning electron microscopy(SEM).The wear tests of composite coatings are comparatively evaluated by sliding against a cemented tungsten carbide ball.The 3D morphology of worn scar is evaluated by using a 3Dprofiler.The results show that the hardness and wear resistance of composite coatings can increase with the increase of particle sizes.The mixture mechanism of adhesive wear and abrasive wear turn into single abrasive wear with the increase of particle sizes as well.The transformation of wear behaviour is mainly attributed to particle roles during wear process.
基金supported by Universiti Sains Malaysia under the Research University Grant (RU. Grant No.1001/PKIMIA/811006)
文摘Cu-P-silicon carbide (SiC) composite coatings were deposited by means of electroless plating.The effects of pH values,temperature,and different concentrations of sodium hypophosphite (NaH2PO2·H2O),nickel sulfate (NiSO4·6H2O),sodium citrate (C6H5Na3O7·2H2O) and SiC on the deposition rate and coating compositions were evaluated,and the bath formulation for Cu-P-SiC composite coatings was optimised.The coating compositions were determined using energy-dispersive X-ray analysis (EDX).The corresponding optimal operating parameters for depositing Cu-P-SiC are as follows:pH 9;temperature,90oC;NaH2PO2·H2O concentration,125 g/L;NiSO4·6H2O concentration,3.125 g/L;SiC concentration,5 g/L;and C6H5Na3O7·2H2O concentration,50 g/L.The surface morphology of the coatings analysed by scanning electron microscopy (SEM) shows that Cu particles are uniformly distributed.The hardness and wear resistance of Cu-P composite coatings are improved with the addition of SiC particles and increase with the increase of SiC content.
文摘There are many factors that affect the phosphorus content in the electroless Ni-P coatings The effects of the compositions of plating solution,the PH values of plat ing solution and the deposition temperature on the phosphorus content in Ni-P coatings were investigated in this paper It is found that the phosphorus content in Ni-P coatings increases and the deposition rate decreases with decreasing PH values,nickel sulphate NiSO4 content of plating solution and the deposition temperature.
基金Supported by Sichuan Provincial Science and Technology Program of China(Grant No.2018JY0245)National Natural Science Foundation of China(Grant No.51975492)Natural Science Foundation of Southwest University of Science and Technology of China(Grant No.19xz7163).
文摘Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
基金supported by the National Natural Science Foundation of China (No. 50876046)
文摘To improve the catalytic activity of amorphous Co-B alloys, Co-B coated aluminum (Co-B/M) nanocomposites were prepared by electroless coating technique and evaluated as additives for the catalytic performance of ammonium perchlorate (AP) and AP-based solid state propellants. X-ray diffractometry (XRD), scanning electron microscopy (SEM), inductive coupled plasma emission spectrometry (ICP), differential scanning calorimetry (DSC) as well as strand burner method were employed to characterize the crystal phase, morphologies, chemical composition, and catalytic activity of the as-synthesized material. The results show that a continuous layer of about 100 nm amorphous Co72.6B27.4 covers the surfaces of M particles. Addition of the as-synthesized Co-B/A1 nanocomposites as catalysts promotes AP decomposition, enhances the burning rate, and lowers the pressure exponent of the AP-based propellants considerably.
基金Funded by the National Natural Science Foundation of China(50474047)
文摘A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducing consumption of copper powders. In the processes of sensitization and activation, AgNO3 replaces the conventional PdCl2, which solves the impurity of bath. Oxide film on the surface of copper powders was tested by chemical analysis. Ag element tested by XRD and XRF is in the form of Ago and exists on the surface of copper powders, which acts as catalyzer in reduction reaction. Morphology and composition of the coating were characterized by SEM and XRD respectively.
文摘Cr_2O_3-forming ferritic stainless steels have been widely explored as intermediate temperature solid oxide fuel cells(SOFCs) interconnects.However,the evaporation of chromia scale might migrate to and poison the cathode,leading to degradation of the cell performance.In this study,Ni-Co-Fe-P coatings were deposited on the ferritic stainless steel by means of a cost-effective technique of electroless method.They are expected to be converted into(Ni,Co,Fe)_3O_4 spinel with a high electrical conductivity and CTE match with stainless steel,which can block the evaporation of chromia formed on steel substrate exposed to the cathode environment of the SOFC. The effects of pH,mass ratio of FeSO_4/(FeSO_4 + NiSO_4 + CoSO_4) and temperature of solution on the deposition rate,compositions,surface morphologies and structures of the Ni-Co-Fe-P coatings were investigated.The results indicated that the deposition rate increased with increasing pH when pH was lower than 9 and then reduced when pH was higher than 9.The deposition rate increased with increasing temperature when temperature was lower than 80℃and then decreased when temperature was higher than 80℃.The deposition rate decreased with the increase in mass ratio of FeSO_4/(NiSO_4 + CoSO_4 + FeSO_4).The coatings consisted of Ni,Co,Fe and P.The phase structure of the coating was amorphous.
文摘The work in this study is focused on investigation of composite nickel coatings. The coatings were deposited on ductile cast iron samples of different composition by electroless method EFTTOM NICKEL with addition of strengthening nanodiamond particles (2-4 nm), The samples were prepared by casting and austempering. The microstructure, microhardness and wear resistance of the coatings were investigated. The thickness of the coatings was also determined (8-10μm). Metallographic analyses, SEM (scanning electron microscopic) investigation, microhardness measurements by knoop method, wear resistance tests were carried out. The coatings with and without heat treatment at 290℃, 6 h were tested. Duplication of microhardness value and improvement of the coating's properties of heat treated coatings were observed.