A reasonable pre-treatment and an ultrasonic pre-plating Cu film were applied for sintering NdFeB permanent magnet. The samples were then plated in neutral bath (PH=7) for 40min and in acidic bath (PH=4.8~5.1) for 2h...A reasonable pre-treatment and an ultrasonic pre-plating Cu film were applied for sintering NdFeB permanent magnet. The samples were then plated in neutral bath (PH=7) for 40min and in acidic bath (PH=4.8~5.1) for 2h. A composite electroless plating with different phosphor content was obtained. The results show that the composite plating coatings are dense and have a strong bond with the substrate, which contribute to the excellent corrosion resistance of the plating coating.展开更多
The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface i...The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.展开更多
A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion...A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.展开更多
研究了硬质合金表面Ni P 纳米Ti(C,N)化学复合镀工艺以及热处理对复合镀层性能影响的规律。结果表-);2)较好的明:1)施镀工艺中各因素对镀速影响的显著性顺序是:温度→pH值→纳米Ti(C,N)加入量→χ(Ni2+ H2PO2施镀工艺为:28g L氯化镍、... 研究了硬质合金表面Ni P 纳米Ti(C,N)化学复合镀工艺以及热处理对复合镀层性能影响的规律。结果表-);2)较好的明:1)施镀工艺中各因素对镀速影响的显著性顺序是:温度→pH值→纳米Ti(C,N)加入量→χ(Ni2+ H2PO2施镀工艺为:28g L氯化镍、25.76g L次亚磷酸钠,50g L氯化铵、45g L柠檬酸钠,0.001g LPbCl2,6g L纳米Ti(C,N),pH=10,温度为80℃。3)Ni P 纳米Ti(C,N)复合镀层较优的热处理工艺为:在400℃保温150min。采用所推荐的施镀和热处理工艺,获得了硬度是硬质合金基体硬度的2.16倍的Ni P 纳米Ti(C,N)复合镀层。并对以上结果产生的原因进行了简单讨论。展开更多
文摘A reasonable pre-treatment and an ultrasonic pre-plating Cu film were applied for sintering NdFeB permanent magnet. The samples were then plated in neutral bath (PH=7) for 40min and in acidic bath (PH=4.8~5.1) for 2h. A composite electroless plating with different phosphor content was obtained. The results show that the composite plating coatings are dense and have a strong bond with the substrate, which contribute to the excellent corrosion resistance of the plating coating.
基金Supported by the National High Technology Research and Development Program of China(863 Program,2009AA05ZI03)the Natural Science Foundation of Jiangsu Province(BK 20130940,BK 20130916)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.
文摘A NiP/TiO2 composite film on carbon steel was prepared by electroless plating and sol-gel composite process. An artificial neural network was applied to optimize the prepared condition of the composite film. Corrosion behavior of the NiP/TiO2 composite film was investigated by polarization resistance measurement, anode polarization, ESEM (environmental scanning electron microscopy) and EIS (electrochemical impedance spectroscopy) measurements. Results showed that the NiP/ TiO2 composite film has a good corrosion resistance in 0.5mol/L H2SO4 solution. The element valence of the composite film was characterized by XPS (X-ray photoelectron spectroscopy) spectrum, and an anticorrosion mechanism of the composite film was discussed.
文摘 研究了硬质合金表面Ni P 纳米Ti(C,N)化学复合镀工艺以及热处理对复合镀层性能影响的规律。结果表-);2)较好的明:1)施镀工艺中各因素对镀速影响的显著性顺序是:温度→pH值→纳米Ti(C,N)加入量→χ(Ni2+ H2PO2施镀工艺为:28g L氯化镍、25.76g L次亚磷酸钠,50g L氯化铵、45g L柠檬酸钠,0.001g LPbCl2,6g L纳米Ti(C,N),pH=10,温度为80℃。3)Ni P 纳米Ti(C,N)复合镀层较优的热处理工艺为:在400℃保温150min。采用所推荐的施镀和热处理工艺,获得了硬度是硬质合金基体硬度的2.16倍的Ni P 纳米Ti(C,N)复合镀层。并对以上结果产生的原因进行了简单讨论。